Для чего нужны командоаппараты в системах управления
КОМАНДОАППАРАТ
Смотреть что такое «КОМАНДОАППАРАТ» в других словарях:
командоаппарат — командоаппарат … Орфографический словарь-справочник
командоаппарат — сущ., кол во синонимов: 1 • командаппарат (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
командоаппарат — Электрический одно или многоступенчатый аппарат для переключения в цепях управления силовых электрических устройств. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом … Справочник технического переводчика
командоаппарат — электрический аппарат для различного рода переключений электрических цепей в системах управления объектами или технологическими процессами. Простейшие командоаппараты кнопки управления, концевые выключатели, контроллеры. В автоматических… … Энциклопедический словарь
КОМАНДОАППАРАТ — электрич. одно или многоступенчатый аппарат для переключений в цепях управления силовых электрич. устройств. В электроприводе в качестве К. часто применяется команда контроллер. См. также Кнопка управления, Кнопочный пускатель … Большой энциклопедический политехнический словарь
командоаппарат — командоаппар ат, а … Русский орфографический словарь
командоаппарат — (2 м); мн. командоаппара/ты, Р. командоаппара/тов … Орфографический словарь русского языка
командоаппарат — командоаппара/т, а … Слитно. Раздельно. Через дефис.
командоаппарат — команд/о/аппарат/ … Морфемно-орфографический словарь
программируемый командоаппарат — ciklinio programinio valdymo įtaisas statusas T sritis automatika atitikmenys: angl. sequencer; stepper module vok. Ablaufsteuerglied, n; Folgesteuergerät, n; Schrittkette, f; Steuerwerk, n; Taktstufen Baustein, m rus. программируемый… … Automatikos terminų žodynas
КОМАНДОАППАРАТЫ
Командоаппараты – устройства преимущественно ручного управления, предназначенные для переключений в цепях управления электрическими аппаратами постоянного и переменного тока. Замыкая и размыкая при помощи командоаппарата те или иные цепи, оператор может дистанционно подать команду на запуск или остановку электрической машины или на изменение режима ее работы.
Командоаппараты выполняются как контактными, так и бесконтактными. Контактные командоаппараты можно разделить на следующие основные группы:
1) кнопки управления;
2) универсальные переключатели и пакетные ключи;
4) путевые и конечные выключатели и переключатели.
Командоаппараты могут приводиться в действие ручным или ножным приводом (кнопки управления, универсальные переключатели и пакетные ключи, командоконтроллеры), двигательным приводом (командоконтроллеры), рабочей машиной (путевые и конечные выключатели и переключатели). Они могут выполняться с фиксированным положением, когда после снятия воздействия коммутационное положение аппарата остается неизменным, и с самовозвратом, когда после прекращения воздействия его контакты возвращаются в исходное (нулевое) положение.
Кнопки управления применяются главным образом для дистанционного управления электромагнитными аппаратами постоянного и переменного тока напряжением до 500 В. Несколько кнопок 1 (рис. 18-1, а), установленных на общей панели или вмонтированных в общем кожухе (основание 3, крышка 2), образуют кнопочный пост.

Рис. 18-1. Кнопочный пост
Кнопка может иметь размыкающие, замыкающие или те и другие контакты. На рис. 18-1, б представлена кнопка с одним замыкающим 10 и одним размыкающим 8 контактами с общим мостиковым контактом 9. Контакты медные, серебрёные. При нажатии на головку 4 мостиковый контакт, связанный с ней через стержень 7 и контактную пружину 6, размыкает одну цепь и замыкает другую. При снятии нажатия подвижная часть (головка со стержнем и мостиковым контактом) возвращается в исходное положение под действием возвратной пружины 5. Все детали элемента монтируются на пластмассовой колодке 11.
Отключающая способность кнопочных элементов до 80 – 100 Вт постоянного тока и до 1500 В·А переменного тока. Коммутационная износостойкость не менее 200000 отключений, механическая износостойкость не менее 1000000 циклов.
Универсальные переключатели (рис. 18-2) предназначены для ручного переключения цепей постоянного и переменного тока напряжением до 500 В. Они применяются для редких переключений цепей управления, как переключатели для вольтметров и амперметров и как коммутаторы для управления серводвигателями и различными электроустановками с неавтоматическим замыканием и размыканием тока, а также для переключения полюсов многоскоростных асинхронных двигателей малой мощности.

Рис. 18-2. Универсальный переключатель серии УП-5000
Универсальные переключатели состоят из набора секций 1, собранных в один рис. 18-2, а) или два (рис. 18-2, б) пакета, через внутренние отверстия которых проходят центральные валики 2. Валики связаны с рукояткой 3 либо непосредственно, либо через шестерни 6 и промежуточный валик 5. Переключатели различных типов или серий отличаются друг от друга числом секций, диаграммой замыканий контактов, числом фиксированных положений и углом поворота рукоятки. Например, универсальные переключатели серии УП-5000 изготовляются с числом секций от 2 до 16 однопакетными и с числом секций от 20 до 24 двухпакетными при числе положений рукоятки от 2 до 9 и с разнообразнейшими (исчисляемыми сотнями) диаграммами замыканий. Переключатели могут выполняться в открытом (рис. 18-2, а) и закрытом (рис. 18-2, б) исполнении. Кожух имеет основание 7 и крышку 4.
Секция пакета (рис. 18-2, в) состоит из пластмассовой перегородки 1, на которой укреплены неподвижная контактная скоба 2 с серебряными напайками 4, два подвижных контакта 5 с серебряными напайками 6, две скобы 7 для привода подвижных контактов, зажимы 8 для присоединения внешних проводов и кулачковые шайбы 9, насаженные на центральный валик 10. Кулачковые шайбы осуществляют замыкание и размыкание контактов при повороте валика. Винт 3 служит для параллельного соединения контактов нескольких секций.
Командоконтроллеры применяются для производства переключений в цепях управления сложных схем автоматизированного электропривода при большой частоте переключений и когда требуется строгое чередование в последовательности действия отдельных механизмов. Они предназначены для работы в цепях до 440 В постоянного и 500 В переменного тока. Большей частью это аппараты ручного или ножного управления. Командоконтроллеры могут иметь и двигательный электропривод, тогда их иногда называют программным реле.
Командоконтроллер состоит из ряда контактных элементов и соответствующих конструктивных деталей, замыкающих или размыкающих контактные элементы в зависимости от угла поворота вала. По конструктивному исполнению различают плоские, барабанные и кулачковые Командоконтроллеры. Устройство их аналогично устройству рассмотренных выше силовых контроллеров.
Плоские командоконтроллеры имеют более простую конструкцию и меньшие размеры, но и меньшую разрывную способность контактов и допускают меньшую частоту переключений в час по сравнению с кулачковыми и барабанными.
Наибольшее применение находят нерегулируемые и регулируемые кулачковые Командоконтроллеры.
Допустимый длительный ток контактов командоконтроллеров составляет 10 – 15 А, ток включения 50 – 75 А, отключаемый постоянный ток при индуктивной нагрузке 0,5 – 2,5 А соответственно при напряжении 440 – 110 В, отключаемый переменный ток 10 А при напряжении до 500 В.
Конструкции командоконтроллеров разнообразны. Они отличаются числом шайб, числом положений, приводом (с фиксацией и без фиксации, с самовозвратом, односторонний, двусторонний и т. д.). Нерегулируемые командоконтроллеры выполняются с числом шайб до 6 – 7 (12 – 14 цепей), регулируемые с двигательным приводом – с числом шайб до 12 (24 цепи).
С целью повышения износостойкости подшипники скольжения контактных элементов выполняется из бронзографитовой металлокерамики, а на валах применяются подшипники качения. Применение бронзографитовых подшипников исключает сухое трение, как подшипники при сборке аппаратов пропитываются в веретенном масле и смазке больше не требуют.
Путевые и конечные выключатели осуществляют переключения в цепях управления в зависимости от пути, проходимого управляемым механизмом (путевые выключатели), или от положения управляемого или защищаемого механизма (конечные выключатели). Конечные выключатели, например, применяются для ограничения хода механизмов в подъемно-транспортных устройствах, ограничения хода суппортов в металлорежущих станках и многих других механизмах, а также для запуска и остановки электродвигателей в зависимости от пути, проходимого обрабатываемым изделием (например, пуск, остановка и реверс рольганга в зависимости от положения слитка). Разработка и внедрение автоматических линий требуют многообразия конструкций путевых и конечных выключателей.
Устройство, осуществляющее размыкание или замыкание контактов в путевых и конечных выключателях, должно удовлетворять различным кинематическим схемам и конструкциям рабочих машин. Соответственно этому устройству различают нажимные (кнопочные), рычажные, шпиндельные и вращающиеся выключатели.
В нажимных выключателях переключение контактов осуществляется нажатием упора механизма на нажимное устройство. В рычажных выключателях воздействие механизма передается на контакт через рычаг, а в шпиндельных – перемещением гайки по винту, связанному через передачи с валом механизма. Вращающиеся путевые и конечные выключатели применяются в тех случаях, когда рабочий орган, в зависимости от которого выключатель должен действовать, имеет вращательное движение. Переключение контактов в этих выключателях осуществляется кулачковыми шайбами.
Путевые и конечные выключатели могут быть нерегулируемые и регулируемые. Коммутационная способность определяется конструкцией контактной системы.
Общими недостатками контактных путевых и конечных выключателей являются механическое воздействие механизма на выключатель, наличие кинематических схем передачи воздействия механизма на контактную систему. Это обусловливает относительно низкую износостойкость, сложность настройки и недостаточную точность работы выключателей. Широкие возможности для устранения указанных недостатков открывают магнитоуправляемые контакты (МК) благодаря отсутствию каких-либо механических передач. Это иллюстрируется схемой путевого выключателя повышенной точности, приведенной на рис. 18-3 [26]. Постоянный магнит 1 (или электромагнит), связанный с механизмом (стрелками показано направление его перемещения), приводит к срабатыванию магнитоуправляемого контакта 2 в зависимости от положения механизма. Полюсные башмаки 3 и 4 служат для повышения точности координат механизма при срабатывании МК.

Рис. 18-3. Схема путевого выключателя с применением МК
МК, например, позволяют выполнять путевые выключатели (переключатели), указывающие направление перемещения и скорость, подающие командные импульсы в счетчики числа изделий, проходящих по конвейеру, в системы программного управления и т. п.
ГЛАВА 19
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Определение, назначение, принцип действия и устройство контроллеров и командоаппаратов
Определение, назначение, принцип действия и устройство
Контроллером называется многоступенчатый, многоцепной аппарат с ручным управлением, предназначенный для изменения схемы главной цепи двигателя или цепи возбуждения. Кроме того, контроллеры также применяются для изменения сопротивлений, включенных в эти цепи. По своему конструктивному исполнению контроллеры делятся на барабанные, кулачковые и плоские.
Барабанные контроллеры. На рис.1 показан контактный элемент барабанного контроллера. На валу 1 укреплён сегментодержатель 2 с подвижным контактом в виде сегмента 3. Сегментодержатель изолирован от вала изоляцией 4. Неподвижный контакт 5 расположен на изолированной рейке 6. При вращении вала 1 сегмент 3 набегает на неподвижный контакт 5, чем осуществляется замыкание цепи. Необходимое контактное нажатие обеспечивается пружиной 7. Вдоль вала расположено большое число контактных элементов. На одном валу устанавливается ряд таких контактных элементов. Сегментодержатели соседних контактных элементов можно соединять между собой в различных необходимых комбинациях. Определенная последовательность замыкания различных контактных элементов обеспечивается различной длиной их сегментов.
Рис.1. Контактный элемент барабанного контроллера.
Кулачковые контроллеры. В кулачковом контроллере переменного тока (рис.2) перекатывающийся подвижный контакт 1 имеет возможность вращаться относительно центра О2, расположенного на контактном рычаге 2. Контактный рычаг 2 поворачивается относительно центра O1. Контакт 1 замыкается с неподвижным контактом 3 и соединяется с выходным контактом с помощью гибкой связи 4. Замыкание контактов 1,3 и необходимое контактное нажатие создаются пружиной 5, воздействующей на контактный рычаг через шток 6. При размыкании контактов кулачок 7 действует через ролик 5 на контактный рычаг. При этом сжимается пружина 5 и контакты /, 3 размыкаются. Момент включения и отключения контактов зависит от профиля кулачковой шайбы 9, приводящей в действие контактные элементы. Малый износ контактов позволяет увеличить число включений в час до 600 при ПВ-60 %. В контроллер входят два комплекта контактных элементов / и //, расположенных по обе стороны кулачковой шайбы 9, что позволяет резко сократить осевую длину устройства. Как в барабанном, так и в кулачковом контроллере имеется механизм для фиксации положения вала. Контроллеры переменного тока в виду облегченного гашения дуги могут не иметь дугогасительных устройств. В них устанавливаются только дугостойкие асбестоцементные перегородки 10. Контроллеры постоянного тока имеют дугогасительное устройство, аналогичное применяемому в контакторах.
Выключение рассмотренного контроллера происходит при воздействии на рукоятку и передаче этого воздействия через кулачковую шайбу, включение происходит с помощью силы пружины 5 при соответствующем положении рукоятки. Поэтому контакты удается развести даже в случае их сваривания. Недостаток конструкции заключается в большом моменте на валу за счет включающих пружин при значительном числе контактных элементов. Надо отметить, что возможны и другие конструктивные решения привода контактов контроллера.
Рис.2. Кулачковый контроллер.
Плоские контроллеры. Для плавного регулирования поля возбуждения крупных генераторов и для пуска в ход и регулирования частоты вращения больших двигателей необходимо иметь большое число ступеней. Применение кулачковых контроллеров здесь нецелесообразно, так как большое число ступеней ведет к резкому возрастанию габаритов аппарата. Число операций в час при регулировании и пуске невелико (10—12). Поэтому особых требований к контроллеру с точки зрения износостойкости не предъявляется. В этом случае широкое распространение получили плоские контроллеры.
На рис.3 показан общий вид плоского контроллера для регулирования возбуждения. Неподвижные контакты 1, имеющие форму призмы, укреплены на изоляционной плите 2, являющейся основанием контроллера. Расположение неподвижных контактов по линии дает возможность иметь большое число ступеней. При той же длине контроллера число ступеней может быть увеличено путем применения параллельного ряда контактов, сдвинутого относительно первого ряда. При сдвиге на полшага число ступеней удваивается. Подвижный контакт выполнен в виде медной щетки. Щетка располагается в траверсе 3 и изолируется от нее. Нажатие создается цилиндрической пружиной. Передача тока с контактной щетки 4 на выходной зажим осуществляется с помощью токосъемной щетки и токосъемной шипы 5. Контроллер рис.3 может одновременно производить переключения в трех независимых цепях. Траверса перемещается с помощью двух винтов 6, приводимых в движение вспомогательным двигателем 7. При наладочных работах перемещение траверсы вручную производится рукояткой 8. В конечных положениях траверса воздействует на конечные выключатели 9, которые останавливают двигатель. Для того чтобы иметь возможность точной остановки контактов на желаемой позиции, скорость движения контактов берется малой: (5—7)10-3 м/с, а двигатель должен иметь торможение. Плоский контроллер может иметь и ручной привод.
Рис.3. Плоский контроллер.
Преимущества и недостатки разных типов контроллеров.
Вследствие малой износостойкости контактов допустимое число включений контроллера в час превышает 240. При этом мощность запускаемого двигателя приходится снижать до 60% номинальной, из-за чего такие контроллеры применяются при редких включениях.
В контроллере используется перекатывающийся линейный контакт. Благодаря перекатыванию контактов дуга, загорающаяся при размыкании, не воздействует на поверхность контакта, участвующую в проведении тока в полностью включенном состоянии.
Малый износ контактов позволяет увеличить число включений в час до 600 при продолжительности включения 60%.
Конструкция контроллера имеет следующую особенность: выключение происходит за счет выступа кулачка, а включение за счет силы пружины. Благодаря этому контакты удается развести даже в случае их сваривания.
Недостатком этой системы является большой момент на валу, создаваемый включающими пружинами при значительном числе контактных элементов. Возможны и другие конструктивные оформления привода контактов. В одном из них контакты замыкаются под действием кулачка и размыкаются под действием пружины, в другом и включение и отключение совершается кулачком. Однако они применяются редко.
Плоские контроллеры получили широкое распространение для плавного регулирования поля возбуждения крупных генераторов и для пуска в ход и регулирования частоты вращения больших двигателей. Так как необходимо иметь большое число ступеней, то применение кулачковых контроллеров здесь нецелесообразно, потому что большое число ступеней ведет к резкому возрастанию габаритов аппарата.
При размыкании между подвижным и неподвижным контактом появляется напряжение, равное падению напряжения на ступени. Для того чтобы не появлялась дуга, допустимое падение напряжения на ступени берется от 10 В (при токе 200 А) до 20 В (при токе 100 А). Допустимое число включений в час определяется износом контактов и не превосходит обычно 10—12. Если напряжение на ступени равно 40—50 В, то применяется специальный контактор, который перемыкает соседние контакты во время перемещения щетки.
В случае, когда необходимо производить коммутацию цепи при токах 100 А и более с частотой включений в час 600 и выше, применяется система, состоящая из контактора и командоаппарата.
Примеры применения контроллеров в электроприводе.
Командоаппаратом называется устройство, предназначенное для переключений в цепях управления силовых электрических аппаратов (контакторов). Иногда они применяются для непосредственного пуска электрических машин малой мощности, для включения электромагнитов и другого оборудования. Командоаппараты могут иметь ручной привод (кнопки, ключи управления, командоконтроллеры) или могут приводиться в действие контролируемым механизмом (путевые выключатели).

Рис.4. Схема соединений кулачкового контроллера для
пуска асинхронного двигателя с фазным ротором.
Кнопки управления. Простейшим командоаппаратом является кнопка управления. Кнопка используется для различных схем пуска, остановки и реверса двигателей путем замыкания и размыкания обмоток контакторов, которые коммутируют главную цепь, а также для управления самыми различными схемами автоматики. Основной частью кнопки является кнопочный элемент, разрез которого показан на рис.5. Для повышения надежности работы контакты выполняются из серебра.
Рис.5. Кнопка управления.
Широкое распространение получили нерегулируемые кулачковые командоконтроллеры. На рис.6 представлен разрез командоконтроллера постоянного тока. Принцип действия аналогичен принципу действия силового кулачкового контроллера. С помощью мостикового контакта 1 в отключаемой цепи создаются два разрыва, что облегчает гашение дуги. Кулачковый привод, большое расстояние контактов от центра вращения О рычага 2, большой межконтактный промежуток позволяют получить высокую скорость расхождения контактов и увеличить ток отключения почти в 4 раза по сравнению с током отключения кнопочного элемента. Моменты замыкания и размыкания контактов зависят от профиля кулачка 3. Положение вала фиксируется с помощью рычажного фиксатора 4. При вращении вала командоконтроллера происходит управление соответствующими силовыми контакторами, которые в свою очередь осуществляют коммутацию в силовых цепях двигателя.
При необходимости точной регулировки момента срабатывания применяются регулируемые кулачковые командоконтроллеры. Достоинством такого механизма является независимость скорости размыкания контактов от частоты вращения вала. Это даёт возможность использовать регулируемый командоконтроллер в качестве путевого выключателя с малой частотой вращения вала.
Рис.6. Нерегулируемый кулачковый командоконтроллер.
Путевые, конечные выключатели и микровыключатели. Путевой выключатель предназначен для замыкания или размыкания контактов цепи с небольшим током в зависимости от положения рабочего органа управляемой машины или аппарата. Конечные выключатели являются частным случаем путевых, поскольку конечный выключатель служит для коммутации цепей в крайних положениях органа управляемой машины.
Путевые выключатели в зависимости от способа привода контактов можно разбить на кнопочные, рычажные и шпиндельные. В кнопочном путевом выключателе контролируемый орган машины воздействует на шток кнопочного элемента (рис.5). Особенностью этого выключателя является размыкание и замыкание контактов с такой же скоростью, что и скорость контролируемого органа. При небольшой величине тока гашение дуги происходит за счет механического растяжения, и при малом растворе контактов она вообще может не погаснуть.
В том случае, когда требуется остановить машину или сделать соответствующие переключения с высокой точностью применяются микропереключатели (рис.7).
Рис.7. Путевой микропереключатель.
Неподвижные контакты 1 и 2 укреплены в пластмассовом корпусе 7. Подвижный контакт 3 укреплён на конце специальной пружины. Пружина состоит из двух частей: плоской 4 и фигурной 5. В указанном положении пружина создаёт давление на верхний контакт 2. При нажатии на головку происходят деформация пружины и переброс контакта в крайнее нижнее положение. Переход контакта из верхнего положения в нижнее совершается очень быстро.
Если необходимо обеспечить надежную работу переключателя при больших ходах и больших токах, применяются рычажные переключатели. Принцип действия одного из таких переключателей показан на рис.8. Контролируемый орган воздействует на ролик 1, укрепленный на конце рычага 2. На другом конце рычага находится подпружиненный ролик 12, который может перемещаться вдоль оси рычага. В указанном на рисунке положении замкнуты контакты 7 и 8. Положение механизма надежно зафиксировано защелкой 6. При воздействии на ролик 1 рычаг 2 поворачивается против часовой стрелки. Ролик 12 поворачивает тарелку 11 и связанные с ней контакты 8 и 9. При этом контакты 7 и 8 размыкаются, а 9 и 10 замыкаются. Замыкание и размыкание контактов происходит с большой скоростью, не зависящей от скорости движения ролика 1.







