Для чего нужны простые механизмы
Зачем нужны простые механизмы
Заводы и фабрики, ремонтные мастерские и станции техобслуживания оборудованы прессами, станками, подъемниками и многими приспособлениями различных размеров. С их помощью сгибают, режут, штампуют и обрабатывают металлы, дерево и другие материалы, поднимают грузы. В научно-исследовательских институтах, вычислительных центрах, да и во многих домах есть счетные машины, которые за считанные секунды решают сложные математические задачи. Они считают, сортируют, взвешивают и упаковывают вещи. Велосипеды, мотоциклы, автомобили, поезда, пароходы, самолеты помогают человеку перемещаться на значительные расстояния. Но все эти перечисленные «помощники» человека существовали не всегда.
Уже в далекие времена у людей возникла необходимость иметь приспособления, позволяющие получить выигрыш в силе. Иными словами, приспособления, благодаря которым можно поднимать грузы, которые без них нельзя далее сдвинуть с места.
Приспособления, увеличивающие силу или изменяющие ее направление, получили название механизмы. Чтобы облегчить свой труд, то есть получить выигрыш в силе, человек изобрел, создал и начал использовать такие простые механизмы, как рычаг, блок, коловорот, наклонную плоскость, клин, винт, колесо и другие. При помощи этих механизмов люди строили пирамиды (рис. 104), храмы и прочее.
Простые механизмы — это не что иное, как орудия труда. В школе на уроках труда знакомились с некоторыми из них.
Намного легче передвигать грузы, поставив их па колеса, раскалывать каменные глыбы или деревянные колоды, пользуясь клином — треугольным куском дерева али металла. Тяжелые предметы, например камни, ящики и даже автомобили, человек может поднимать или приподнимать с помощью длинного деревянного либо металлического стержня или доски, имеющих точку опоры, — рычага (рис. 105).
По принципу рычага работает колодец (рис. 107, 2), народное название которого «журавль». Правда, рычаг имеет недостаток с помощью этого простого механизма нельзя поднять грузы на значительную высоту.
Рис. 105. Примеры использования рычага (1), клина (2, 4), колеса (3) |
Другой простой механизм — блок — не имеет такого недостатка. Блок изготавливают в виде колеса с углублением для веревки или цепи (рис. 106). Если блок закрепить на нужной высоте и перебросить через него веревку или цепь, то поднимать грузы будет удобней и быстрее. Однако блок не дает выигрыша в силе, а только изменяет направление ее действия. Длительное время этот простой механизм был незаменим при возведении сооружений. Он и теперь используется в индивидуальном строительстве.
В сельской местности воду из колодцев достаточно часто поднимают при помощи коловорота (рис 107, 1). Это также простои механизм. Материал с сайта http://worldofschool.ru
Рис. 106. Использование блока |
Рис. 107. Колодец с коловоротом (1) и с «журавлем» (2) |
К простым механизмам относится также и наклонная плоскость. Ее используют для получения выигрыша в силе при перемещении тел (рис. 108).
Простые механизмы.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.
Рычаг.
Рис. 1. Рычаг |
Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.
Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).
Неподвижный блок.
Важной разновидностью рычага является блок — укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.
На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).
Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.
Подвижный блок.
Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).
Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.
Наклонная плоскость.
Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.
Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:
Проектируем на ось :
Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.
Широко применяемыми разновидностями наклонной плоскости являются клин и винт.
Золотое правило механики.
Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.
т. е. той же величине, что и без использования рычага.
т. е. ту же самую, что и при вертикальном поднятии груза.
Данные факты служат проявлениями так называемого золотого правила механики.
Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.
Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.
КПД механизма.
На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн,
которая совершается для тех же целей в реальной ситуации.
Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.
Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.
Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:
КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.
Ускорения нет, поэтому силы, действующие на груз, уравновешены:
Проектируем на ось X:
Проектируем на ось Y:
Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:
Учебники
Журнал «Квант»
Общие
Содержание
Простейшие механизмы
Для облегчения совершения механической работы издавна используются различные приспособления — простые механизмы.
Простые механизмы — это устройства, в которых работа совершается только за счет механической энергии. Простые механизмы (рычаг, наклонная плоскость, блок и др.) служат для преобразования силы, их применяют при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.
Наклонная плоскость
Ее используют в тех случаях, когда надо поднять тяжелый груз на некоторую высоту.
Рассмотрим гладкую наклонную плоскость (рис. 1). Рассчитаем силу F, которую надо приложить к телу массой m, чтобы поднять его равномерно на высоту h.
Запишем основное уравнение динамики\[
\vec F + \vec N + m \vec g = 0\]. Спроецируем это равенство на ось Ox\[
F = mg \sin \alpha = mg \frac hl \Rightarrow \frac
т.е для равномерного поднятия груза с помощью наклонной плоскости необходимо приложить силу, во столько раз меньшую силы тяжести груза, во сколько раз длина наклонной плоскости больше ее высоты.
Рычаг
Рычагом называют имеющее неподвижную ось вращения твердое тело, на которое действуют силы, стремящиеся повернуть его вокруг этой оси. Различают рычаги первого и второго рода.
Рычагом первого рода называют рычаг, ось вращения О которого расположена между точками А и В приложения сил, а сами силы направлены в одну сторону (рис. 2, а). Это коромысло равноплечих весов, железнодорожный шлагбаум, ножницы и др.
Рычаг второго рода — рычаг, ось вращения О которого расположена по одну сторону от точек приложения сил, а сами силы направлены противоположно друг другу (рис. 2, б). Это гаечные ключи, щипцы для раскалывания орехов, двери и др.
\frac
При равновесии рычага под действием двух сил модули этих сил обратно пропорциональны их плечам.
С помощью рычага можно получить выигрыш в силе, т.е. меньшей силой можно уравновесить большую силу.
Блоки используют для поднятия грузов. Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускают веревку, трос или цепь. Неподвижным называют такой блок, ось которого закреплена и при подъеме грузов она не поднимается и не опускается (рис. 3, а, б).
Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи приложенных сил равны радиусу колеса. Следовательно, из правила моментов mgr = Fr вытекает, что неподвижный блок выигрыша в силе не дает (F = mg). Он позволяет менять направление действия силы.
На рисунке 4, а, б изображен подвижный блок (ось блока поднимается и опускается вместе с грузом). Такой блок поворачивается около мгновенной оси О. Правило моментов для него будет иметь вид
mgr = F \cdot 2r \Rightarrow F = \frac
Таким образом, подвижный блок дает выигрыш в силе в два раза.
Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 5). Неподвижный блок применяется только для удобства. Он, изменяя направление действия силы, позволяет, например, поднимать груз, стоя на земле.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 73-75.
Простые механизмы: что это такое, виды простых механизмов
Содержание:
Простые механизмы – это механические агрегаты, применяемые для направления силы либо её величины. Их называют дающими выигрыш в силе устройствами. Рассмотрим распространённые виды простых механизмов. Кратко коснёмся принципов их функционирования, приносимой пользы, целей применения.
Определение и разновидности
Из уроков истории известны факты применения приспособлений для метания снарядов, перемещения строительных материалов, передачи механической энергии. Они вызывали движения, преодолевающие большие силы, особенно противодействующие им в начале процесса, например, сдвигание тяжелого камня с места. Из предыдущих уроков вы знаете, что такое механическая работа. Она вычисляется как произведение приложенной к телу силы на преодолённое под её действием расстояние: A = F*s.
Природа создана так, что в замкнутой системе получить выигрыш в работе нельзя. Во сколько раз меньшую силу приложите, во столько проиграете в расстоянии – тело придётся перемещать дальше и наоборот. Простые механизмы применяют для того, чтобы развивать силы, равные по модулю и противоположные по значению противодействующим движению силам.
При расчётах величиной сил трения могут пренебрегать.
Простые механизмы в физике
Рычаг, как любой простой механизм, – преобразователь сил.
Блок – равноплечий рычаг. Представлен вращающимся колесом с желобком для верёвки по всей длине окружности. Неподвижный блок не даёт выигрыша в силе, а направляет её. Ось подвижного блока располагается в обоймах, двигается с ними, поэтому позволяет управлять силой. Для получения выигрыша также применяются сдвоенные блоки разного диаметра, насаженные на одну ось.
Ворот – модифицированный двойной блок, ранее применяемый для перетаскивания и подъёма грузов на небольшие расстояния либо высоты. В вороток вставляются длинные спицы, играющие роль большего блока, с радиусом большим, чем у меньшего блока.
В технике также применяют:
Распространены простые механизмы, такие как винт и клин. Пример клина – лезвие колуна. По тыльной стороне инструмента наносятся удары, например, кувалдой, и устройство погружается в древесину, раскалывая её. Чем меньше угол заточки лезвия, тем проще оно входит в дерево.
Клин применяется и для подъёма грузов. Особенность обоих видов клина – значительная сила трения, действующая между телом и боковыми гранями приспособления.
Винт работает по принципу клина, где вместо ударов совершается вращение крупного болта с малым шагом резьбы. Применяется в прессах, колунах, домкратах, при завинчивании крепежей (саморезов).
Примеры простых механизмов в повседневной жизни:
Какие простые механизмы вы знаете и используете в быту кроме названных? К какой категории отнести дверь в автомобиле, тиски, лебёдку?
Простые механизмы
Содержание
Трехтысячный год до нашей эры. Действо разворачивается на территории современного графства Уилтшир в Англии на живописных солсберийских равнинах.
Шумная ватага людей решительно тащит громадный тридцатитонный кремнистый песчаник, распространенную горную породу местности, в то время, как в арьергарде камне-человеко-колонны кипит основная работа: туда-сюда то и дело снуют крепкие ребята с бревнами, оперативно перекатывая и подкладывая спереди округлые деревяшки, выкатившиеся из-под камня сзади.
Короче говоря, транспортировочная суета.
Вот так, в нескольких словах можно описать процесс самой загадочной и мистической стройки человечества — процесс сооружения мегалитического Стоунхенджа.
Никому доподлинно неизвестно, кто возвел это чудо света — кельтские ли жрецы, может, древние бритты, предки современных французов, свидетели Мерлиновой бороды или инопланетяне.
Неизвестно и то, какую цель преследовали возводившие: археологи, историки и ученые всего мира до сих пор бьются над разгадками тайн постройки этого сооружения каменного века, неофициально именуемого восьмым чудом света.
Рисунок 1. Одна из древнейших комплексных стройплощадок человечества — неолитический Стоунхендж.
Однако одно все же известно.
Наши предки, еще задолго до изобретения колеса, кое-что таки смыслили в физике. Иначе как бы им удавалось в двадцать-тридцать рук перемещать на огромные расстояния объекты массой более тридцати тонн?
Для справки. Тридцать тонн для человека — невероятная масса. К примеру, профессиональные пауэрлифтеры способны поднимать штанги порядка трехсот-четырехсот килограмм за подход. А это значит, что нам пришлось бы отправить в прошлое примерно 85 натренированных спортсменов экстра-класса, чтобы обычной тягой сдвинуть с места неолитический валун. Да, наших предков из каменного века недооценивать не стоит. Особенно их смекалку.
Что такое механизм?
История стара как мир: при меньшем получить больше.
Таков закон нашего существования в природе. Ресурсы человека ограничены, условия жизни — быстротечны и непредсказуемы, потребности — велики. А чтобы процветать и выживать, не нарушая пропорции данных трех переменных, необходимо умение не только подстраиваться, но и использовать с умом то, что дано. В конце концов, умение облегчить себе труд и превысить мышечные возможности — это то, что выделяет нас на фоне других представителей царства животных.
Именно поэтому технологические решения всегда развивались параллельно с человеком. Мы всегда были, есть и будем в поиске. В поиске того, что могло бы помочь нам выгадывать больше, вкладываясь меньше. И практически все, что мы придумывали во имя этой цели на протяжении тысячелетий, так или иначе можно отнести к понятию механизма.
Рисунок 2. Лопата? Лопата! Вообще-то является механизмом рычагового типа.
Механизм — это устройство, повышающее производительность труда и облегчающее его выполнение. Задача его проста — преобразовывать энергию и передавать движение: к механизму прикладывается сила, которую он в свою очередь «перерабатывает» и передает телу, совершая работу. Обычно наименьший неделимый элемент механизма называется простым или простейшим.
Ему можно дать следующее краткое определение:
Простой механизм — устройство, служащее для преобразования силы.
Механизмы помогают нам везде. Начать с того, что в скелете человека все кости, имеющие свободный ход, являются «простыми механизмами» — рычагами. Продолжить можно чем угодно, хоть содержимым кухонного шкафчика: ножи, топорики для рубки мяса, открывашки, штопоры, ножницы и прочее — все это имеет отношение к простым механизмам. Двери, окна, тележки в супермаркетах, качели, пандусы, пинцеты, ручки смесителя в ванной, колодца, велосипеды, внутренности ремонтного ящика, от гвоздодера до кусачек… продолжать можно долго. Простые механизмы — основа нашей жизни.
Основы простых механизмов
По математике формул очевидно, что с увеличением расстояния перемещения, сила, необходимая для совершения того же объема работы, уменьшается.
К тому же, так как сила — вектор, с помощью механизма мы можем изменять не только ее величину, но и направление.
Рисунок 3. Упрощенный расчет длин траекторий лестницы на примере прямоугольного треугольника.
Принцип: пройти два лишних метра, затратив при этом меньше мышечных сил.
Флаг тридцать тонн не весит, но с помощью механизма мы задали силе противоположное направление и немного выиграли — лезть никуда не придется.
Принцип механического выигрыша
«Немного выиграли» — вся суть механизмов. Благодаря простым механическим устройствам мы меняем направление силы, расстояние ее применения, непосредственно значение силы и все ради того, чтобы получить выигрыш в силе.
Определить выигрыш с точки зрения физики можно так:
Механический выигрыш — величина увеличения силы, получаемая в результате работы простого механизма.
Величина работы никогда не меняется — меняется либо сила, либо расстояние. Выигрыш рассчитывается отношением двух сил:
Виды простых механизмов
Простые механизмы по своей конструкции делятся на два типа: рычаг и наклонная плоскость.
У рычага встречается две разновидности — блок и ворот. Наклонная плоскость так же встречается с двумя разновидностями — винтом и клином.
Ну, чисто технически вы будете правы, если скажете, что мир устроен и построен на шести простых механизмах.
Рычаг
Рычаг. Представляет собой перекладину, которая вращается вокруг неподвижной точки опоры. Рычаг помогает поднимать тяжелые предметы, уравновешивать их. Пример простого рычага — качели-балансиры.
Блок. Разновидность рычага. В простом понимании представляет собой веревку, намотанную на колесо.
Облегчает работу тем, что меняет направление силы. К тому же, тянут веревку обычно вниз, поднимая тем самым груз наверх. А это значит что? Правильно: нам еще и помогает сила тяжести.
Ворот
Ворот. Тоже разновидность рычага. Механизм принципа «ось-колесо». Ось — цилиндр, который фиксирует колесо на месте, а колесо на этой оси вращается.
Входная сила прикладывается к оси, давая выходную силу в виде вращательного движения колеса. Вспомните велосипед: чем активнее вы нажимаете на педаль, тем быстрее двигаетесь.
Наклонная плоскость
Наклонная плоскость. Ранее упомянутый нами в примере лестничный проем — яркий пример того, как выглядит механизм по типу наклонной плоскости.
Это поверхность, у которой один край расположен выше другого. Кстати, именно в наклонных плоскостях кроется секрет постройки древних пирамид Египта.
Винт. Если взять наклонную плоскость, обернуть ее вокруг цилиндра, то мы получим винт — механизм, который используется для того, чтобы что-то опускать, поднимать или обычно просто дабы удерживать два тела вместе.
Типичная крышка от банки или бутылки — показательный пример винта. А вот вкрутить даже маленький винтик — задача времязатратная, поскольку винтовые механизмы значительно увеличивают расстояние применения силы. Чтобы сравнить, можно взять два винта и кусок поролона: один винт в него вдавить, другой вкрутить. А теперь попробуйте вдавить винт в стену…
Клин. Если представить две наклонные плоскости, сходящиеся в одной точке, выйдет то, что называется клином.
Он помогает удерживать предметы на месте, но, что важнее, раскалывать тела или отделять от них части.
Это интересно: почему говорят «клин клином вышибают»?
Этимология фразеологизма тесно связана с тем, как в старину раскалывали массивные бревна.
Одним клином с такой задачей было не справиться: забитый до упора, он лишь частично раскалывал бревно.
Ни клин не достать обратно, ни дров не нарубить. Поэтому рядом с забитым клином вбивали рядом другой — так, чтобы второй заходил глубже и вышибал первый. И так далее, и тому подобное, до тех пор, пока деревянный брусок не расколется напополам.
Вот и выходит, что клин клином вышибают в прямом смысле — один клин вышибают вторым. И откуда только взялась распространенная речевая ошибка «клин клином вышибает»?
Итоги
Так что же, простые механизмы насколько эффективны, что знаменитая архимедова «угроза» про переворот Земли — правда?
Немного математической магии рычагов, о которой вы узнаете совсем скоро, и… выходит один миллион триллионов километров, он же квинтиллион.
Подсказка: возраст Земли — четыре с половиной миллиарда лет. Так вот, пока Архимед будет двигать свой рычаг, Земля успеет пережить более 6000 циклов идущих друг за другом Больших взрывов и апокалипсисов.
Да и дали бы мы Архимеду точку опоры, пусть так. Вопрос в другом: как сконструировать рычаг такой неимоверной длины в земных условиях?
А как же его после переместить в космическое пространство?