Для чего нужны рибосомы клетки

Исследователи раскрыли рецепт создания рибосом. Как это поможет человечеству?

Ученые придумали высокопроизводительный метод построения рибосом, который использует части различных микробов, а также измеряет и оптимизирует способность рибосом катализировать производство белка. Рассказываем о новом исследовании биологов и все, что нужно знать о рибосоме.

Читайте «Хайтек» в

Что такое рибосома?

Рибосоома — важнейшая немембранная органелла всех живых клеток, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму диаметром от 15–20 нанометров (прокариоты) до 25–30 нанометров (эукариоты), состоят из большой и малой субъединиц. Малая субъединица считывает информацию с матричной РНК, а большая — присоединяет соответствующую аминокислоту к синтезируемой цепочке белка.

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Какая функция у рибосом?

Рибосомы на внешней поверхности эндоплазматического ретикулума играют важную роль в синтезе белка внутри клеток.

ДНК в ядре клетки несет генетический код, который состоит из последовательностей аденина (A), тимина (T), гуанина (G) и цитозина (C). РНК, которая содержит урацил (U) вместо тимина, переносит код на участки образования белков в клетке. Чтобы создать РНК, ДНК соединяет свои основания с основаниями «свободных» нуклеотидов. Информационная РНК (мРНК) затем перемещается к рибосомам в цитоплазме клетки, где происходит синтез белка. Основные триплеты транспортной РНК (тРНК) соединяются с таковыми из мРНК и в то же время откладывают свои аминокислоты на растущей белковой цепи. Наконец, синтезированный белок высвобождается для выполнения своей задачи в клетке или в другом месте тела.

Рибосомы состоят из рибосомных белков и рибосомальной РНК (рРНК). У прокариот рибосомы примерно на 40% состоят из белка. У эукариот рибосомы примерно наполовину состоят из белка и наполовину из рРНК. Рибосомы обычно состоят из трех или четырех молекул рРНК и примерно от 40 до 80 различных рибосомных белков.

Каждая рибосома состоит из двух субъединиц, большей и меньшей, каждая из которых имеет характерную форму. Субъединицы обычно называют их скоростью седиментации, которая измеряется в единицах Сведберга (S) в центробежном поле. Маленькие и большие субъединицы эукариот обозначаются 40S и 60S, соответственно, в то время как прокариоты содержат небольшую субъединицу 30S и большую субъединицу 50S.

Зачем ученым изучать рибосомы?

Рибосома — это клеточная фабрика по синтезу белка. Обладая скоростью синтеза белка до 20 аминокислот в секунду и точностью 99,99%, необычайная каталитическая способность бактериального механизма трансляции привлекла значительные усилия для разработки, реконструкции и перепрофилирования для биохимических исследований и новых функций. Фундаментальные ограничения на химические процессы, которые может выполнять активный сайт на основе РНК рибосомы, неизвестны до сих пор.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Тем не менее, ученые стремятся создать новые виды рибосом, которые генерируют белки с новыми свойствами.

Исследователи из Института Брода сделали важный шаг в этом направлении. Они придумали высокопроизводительный метод построения рибосом, который использует части различных микробов. Кроме того, он измеряет и оптимизирует способность рибосом катализировать производство белка. В исследовании, опубликованном в Nature Communications, подробно описывается успешное введение более 30 различных рибосом в клетку Escherichia coli.

Напомним, E. coli, или кишечная палочка — вид грамотрицательных палочковидных бактерий, широко распространенных в нижней части кишечника теплокровных животных. Большинство ее штаммов безвредны, однако серотип O157:H7 может вызывать тяжелые пищевые отравления у людей и животных.

Поскольку антибиотики обычно нацелены на рибосомы у различных бактерий, новый метод может стать способом быстрого тестирования новых лекарств, нацеленных только на молекулярные фабрики конкретных патогенов у человека.

Таким образом ученые планируют решить проблему резистентности к антибиотикам. Технология позволит проверять новые лекарства и потенциально обнаруживать молекулы, которые ингибируют рибосомы от патогенов человека, но не комменсальные бактерии. Они помогают иммунной системе распознавать болезнетворные микроорганизмы. Патогенные бактерии при попадании в организм способны вызывать заболевания. Эти бактерии могут распространяться через воду, воздух, почву, а также при физическом контакте.

Работа также дает исследователям новые инструменты для синтетической биологии. Раньше рибосомы E. coli представляли собой основную часть инструментария, доступного синтетическим биологам. Во время работы ученые были заинтересованы в расширении этого инструментария на рибосомы других видов и использовании их для новых приложений.

Как продвинулись ученые?

Исследователи синтетической биологии обычно используют части рибосомы E. coli при конструировании новых макромолекул, но это ограничивает возможности исследователей создавать большее количество молекул.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

В начале исследования команда ученых стремилась понять, почему так сложно заставить рибосому другого вида работать в клетке E. coli. Для этого биологи использовали ортогональную трансляцию. Этот метод заставляет рибосому генерировать исключительно определенный белок — в данном случае зеленый флуоресцентный белок (GFP). Если рибосома работала в новой среде, исследователи могли сразу увидеть, что клетка вырабатывает GFP и флуоресцирует зеленым цветом.

Напомним, зеленый флуоресцентный белок выделен из медузы Aequorea victoria, который флуоресцирует в зеленом диапазоне при освещении его светом от синего до ультрафиолетового диапазона.

Используя этот метод, ученые определили, что рибосомы бактерий, тесно связанных с E. coli, могут легко транслировать GFP. Чем более генетически диверсифицированы бактерии, тем труднее их рибосомам работать в кишечной палочке.

Однако команда из Института Брода смогла улучшить функцию рибосом из отдаленно родственных бактерий, введя ключевую РНК и белки, связанные с рибосомами из исходной клетки. Таким образом миниатюрная молекулярная фабрика чувствовала себя как дома и заставляла ее работать с E. coli. Затем исследователи разработали универсальные инженерные правила для ортогональной трансляции, которые можно было бы распространить на любой репортерный белок. Достоверность этих правил ученые подтвердили в тесте на других флуоресцентных белках.

Авторы работы планируют превратить свой подход в платформу для скрининга антибиотиков на предмет ингибирования, специфичного для рибосом, а также для исследования биотехнологических применений сконструированных рибосом.

Источник

Рибосома – минифабрика по производству белков

Одним из наиболее сложных процессов, осуществляемых живыми существами, является, пожалуй, синтез белков — важнейших структурных и функциональных «кирпичиков» любого организма. Подлинное понимание молекулярных процессов, лежащих в его основе, могло бы пролить свет на неимоверно давние события, связанные с тайной зарождения самой Жизни.

Во всех живых организмах, от простейших бактерий до человека, белки синтезируются специальными клеточными устройствами рибосомами. На этих уникальных фабриках происходит образование белковой цепи из отдельных аминокислот.

В клетках, ведущих интенсивный белковый синтез, рибосом очень много: так, в одной бактериальной клетке содержится около 10 тыс. этих минифабрик, составляющих до 30% общей сухой массы клетки! В клетках высших организмов рибосом содержится меньше — их число зависит от типа ткани и уровня метаболизма клетки.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Рибосома синтезирует белок со средней скоростью 10—20 аминокислот в секунду. Точность трансляции исключительно высока — ошибочное включение «неправильного» аминокислотного остатка в цепь белка составляет в среднем одну аминокислоту на 3 тыс. звеньев (при средней длине белковой цепи у человека в 500 аминокислотных остатков), т. е. всего одна ошибка на шесть белков.

О генетическом коде

Программа, задающая последовательность аминокислотных остатков в белке, записана в геноме клетки: около полувека назад было установлено, что аминокислотные последовательности всех белков непосредственно закодированы в ДНК с помощью так называемого генетического кода. Согласно этому коду, универсальному для всех живых организмов, каждой из двадцати существующих аминокислот соответствует свой кодон — тройка нуклеотидов, представляющих собой элементарные единицы цепочки ДНК. Любой белок закодирован в ДНК определенной последовательностью кодонов. Эта последовательность называется геном.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Одна клетка может содержать до 10 тыс. рибосом — белковых минифабрик, составляющих до 30% сухой клеточной массы

Как же эта генетическая информация доходит до рибосомы? На отдельном гене, как на матрице, синтезируется цепь еще одной информационной молекулы — рибонуклеиновой кислоты (РНК). Этот процесс копирования гена, называемый транскрипцией, осуществляется специальными ферментами — РНК-полимеразами.

Но РНК, полученная таким образом, еще не является матрицей для синтеза белка: из нее, вырезаются определенные «некодирующие» куски нуклеотидной последовательности (процесс сплайсинга).

Точность белкового синтеза рибосомой исключительно высока — у человека ошибка составляет один на три тысячи «неправильный» аминокислотный остаток

В результате получается матричная РНК (мРНК), которая и используется рибосомами в качестве программы для синтеза белка. Сам синтез, т.е. перевод генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности белка, называется трансляцией.

Декодирование и синтез

В клетках эукариот одну мРНК обычно транслирует сразу множе­ство рибосом, образуя так называемые полисомы, которые можно отчетливо видеть с помощью электронной микроскопии, позволяющей получать увеличение в десятки тысяч раз.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Как поступают в рибосому аминокислоты, являющиеся строитель­ными кирпичиками для синтеза белка? Еще в 50-х годах прошлого столетия были открыты особые «перевозчики», доставляющие аминокислоты в рибосому, — короткие (длиной менее 80 нуклеотидов) транспортные РНК (тРНК). Специальный фермент присоединяет аминокислоту к одному из концов тРНК, причем каждой аминокислоте соответствует строго определенная тРНК. Синтез белка на рибосоме включает три основные стадии: начало, удлинение полипептидной цепи и окончание.

Сама рибосома — одна из самых сложно организованных молекулярных машин клетки — состоит из двух неравных частей, так называемых субчастиц (малой и большой). Ее можно легко разделить на части центрифугированием при сверхвысоких скоростях в специальных пробирках с раствором сахарозы, концентрация которой увеличивается сверху вниз. Поскольку малая субчастица в два раза легче большой, они движутся от верха пробирки к дну с разными скоростями.

Малая субчастица отвечает за декодирование генетической информации. Она состоит из высокомолекулярной рибосомной РНК (рРНК) и нескольких десятков белков (около 20 у прокариот и более 30 — у эукариот).

В раковых клетках резко повышается уровень некоторых рибосомных белков. Возможная причина — сбои в механизмах авторегуляции их производства

Большая субчастица, ответст­венная за образование пептидной связи между аминокислотными остатками, состоит из нескольких рРНК: одной высокомолекулярной и одной (или двух в случае эукариот) низкомолекулярной, а также нескольких десятков белков (более 30 у прокариот и до 50 у эукариот). О масштабе деятельности рибосом можно судить хотя бы по тому факту, что рибосомная РНК составляет около 80 % всей РНК клетки, тРНК, транспортирующая аминокислоты, — около 15 %, тогда как матричная РНК, несущая информацию о белковой последовательности, — лишь 5 %!

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Нужно отметить, что рибосомные белки наделены множеством других, дополнительных функций, которые могут проявляться на разных этапах жизнедеятельности клетки. Например, рибосомный белок S3 человека — один из ключевых белков центра связывания мРНК на рибосоме — принимает также участие в «ремонте» повреждений в ДНК (Kim et al., 1995), участвует в апоптозе (запрограммированной гибели клетки) (Jung et al., 2004), а также защищает от разрушения белок теплового шока (Kim et al., 2006).

Кроме того, чересчур интенсивный синтез некоторых рибосомных белков может свидетельствовать о развитии злокачественной трансформации клетки. Например, значительное повышение уровня пяти рибосомных белков было обнаружено в опухолевых клетках толстого кишечника (Zhang et al., 1999). Недавно сотрудниками лаборатории структуры и функции рибосом ИХБФМ СО РАН был открыт новый механизм авторегуляции биосинтеза рибосомных белков у человека, основанный на принципе обратной связи. Не­управляемый синтез рибосомных белков, характерный для опухолевых клеток, вероятно, вызван сбоями именно в этом механизме. Дальнейшие исследования в этой области представляют особый инте¬рес не только для ученых, но и для медиков.

Работает как «рибозим»

Удивительно, но, несмотря на миллиарды лет эволюции, разделяющие бактерии и человека, вторичная структура рибосомальных РНК у них мало различается.

О том, как уложена рРНК в субчастицах и каким образом она взаимодействует с рибосомными белками, до недавнего времени было известно не много. Революционный сдвиг в понимании устройства рибосомы на молекулярном уровне произошел на рубеже нового тысячелетия, когда с помощью рентгеноструктурного анализа удалось расшифровать на уровне отдельных атомов структуру рибосом простейших организмов и их модельных комплексов с мРНК и тРНК. Это позволило понять молекулярные механизмы декодирования генетической информации и образования связей в молекуле белка.

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Оказалось, что оба важнейших функциональных центра рибосомы — как декодирующий на малой субчастице, так и отвечающий за синтез белковой цепочки на большой субчастице — сформированы не белками, а рибосомной РНК. То есть, рибосома работает подобно рибозимам — необычным ферментам, состоящим не из белков, а из РНК.

Рибосомные белки, тем не менее, также играют важную роль в работе рибосомы. В отсутствие этих белков рибосомные РНК совершенно неспособны ни декодировать генетическую информацию, ни катализировать образование пеп­тидных связей. Белки обеспечивают необходимую для работы рибосомы сложную «укладку» рРНК в функциональных центрах, служат «передатчиками» изменений пространственной структуры рибосомы, необходимых в процессе работы, а также связывают различные молекулы, влияющие на скорость и точность процесса белкового синтеза.

Сама рабочая схема белкового цикла в принципе одинакова для рибосом всех живых существ. Однако до сих пор неизвестно, до какой степени схожи молекулярные механизмы работы рибосом у разных организмов. Особенно не хватает информации об устройстве функциональных центров рибосом высших организмов, которые изучены гораздо хуже, чем рибосомы простейших.

Это связано с тем, что многие из методов, успешно использованных для исследования рибосом прокариот, оказались для эукариот неприменимыми. Так, из рибосом высших организмов не удается получить кристаллы, пригодные для рентгеноструктурного анализа, а их субчастицы невозможно «собрать» в пробирке из смеси рибосомных белков и рРНК, как это делается у простейших.

От низших — к высшим

И все-таки способы получения сведений о строении функциональных центров рибосом высших организмов существуют. Одним из таких методов является метод химического аффинного сшивания, разработанный 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.

Метод основан на использовании коротких синтетических мРНК, несущих в выбранном положении химически активные («сшивающие») группы, которые в нужный момент можно активировать (например, облучая мягким ультрафиолетовым светом).

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Метод аффинного химического сшивания был разработан 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.До появления рентгеноструктурного анализа рибосом он использовался во всем мире для изучения рибосом у прокариот.
Этот метод и сегодня является основным для изучения структурно-функциональной организации рибосом высших организмов

Достоинство этого метода в том, что сшивающую группу можно присоединить практически к любому нуклеотидному остатку мРНК и в результате получить детальную информацию о его окружении на рибосоме. Используя набор коротких мРНК с разным расположе­нием сшивающей группы, нам удалось определить рибосомные белки и нуклеотиды рРНК рибосомы человека, образующие канал для считывания генетической инфор­мации в процессе трансляции.

Впервые экспериментально удалось показать, что все нуклеотиды рРНК малой рибосомной частицы человека, соседствующие с кодонами мРНК, расположены в консервативных районах вторичной структуры молекулы рРНК. Более того, их расположение совпадает с положением соответствующих нуклеотидов во вторичной структуре рРНК рибосом низших организмов. Это позволило сделать вывод, что эта часть рибосомной РНК малой субчастицы составляет эволюционно консервативный «кор» (сердцевину) рибосомы, структурно идентичный у всех организмов.

С другой стороны, в устройстве мРНК-связывающего канала рибосом у человека и низших организмов обнаружен ряд принципиальных различий. Оказалось, что у высших организмов рибосомные белки играют намного большую роль в формировании этого канала, чем у прокариот, кроме того, в этом участвуют также белки, не имеющие «двойников» (гомологов) у низших организмов.

Почему же, несмотря на то, что функция рибосомы практически не изменилась в процессе эволюции, в организации декодирующего центра рибосом у высших организ­мов появились специфичные черты? Вероятно, это связано с более сложной и многостадийной регуляцией белкового синтеза у эукариот по сравнению с прокариотами, в ходе которой рибосомные белки мРНК-связывающего канала могут взаимодействовать не только с мРНК, но и с различными факторами, влияющими на эффективность и точность трансляции. Так ли это, покажут дальнейшие исследования.

Источник

Научная электронная библиотека

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клеткиучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клеткитранспортировка питательных веществ и утилизация продуктов обмена клетки;

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клеткибуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клеткиподдержание тургора (упругость) клетки;

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клеткивсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Для чего нужны рибосомы клетки. Смотреть фото Для чего нужны рибосомы клетки. Смотреть картинку Для чего нужны рибосомы клетки. Картинка про Для чего нужны рибосомы клетки. Фото Для чего нужны рибосомы клетки

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *