Для чего нужны синусы косинусы и тангенсы котангенсы

Тригонометрия простыми словами

Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».

Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).

Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.

Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.

Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.

Значения тригонометрических функций
для первой четверти круга (0° – 90°)

Принцип повтора знаков тригонометрических функций

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.

В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.

Тригонометрический круг

Углы в радианах

Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

Источник

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

0 °30 °45 °60 °90 °sin α01 22 23 21cos α13 22 21 20tg α03 313нетctg αнет313 30

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Источник

Математика для блондинок

Страницы

пятница, 8 апреля 2011 г.

Зачем нужны синусы и косинусы?

Зачем нужны синусы и косинусы? Действительно, интересный вопрос. В комментариях к тригонометрическому кругу синусов и косинусов появился такой вопрос:

а где в жизни пригодится sin и cos?
p.s зачем они нужны синусы косинусы?

Давайте будем называть вещи своими именами. Подавляющему большинству из вас они никогда не пригодятся. Разве что, когда ваши дети пойдут в школу и начнут изучать тригонометрические функции, они вам тоже зададут вопрос «Зачем нужны синусы и косинусы?» и, в добавок, попросят объяснить, что это такое.

Деньгами мы пользуемся каждый день уже не одну тысячу лет и прекрасно обходимся без всяких синусов, косинусов и прочих изящных математических штучек. Уверяю вас, и через миллионы лет в подсчете денег ничего не изменится. Не потому, что мы такие тупые, а потому, что таковы математические свойства денег: нельзя рубли умножить на рубли и с деньгами во второй степени бежать в автосалон покупать «Ламбарджини».

На кухне, в кулинарных рецептах, вы тоже не встретите ни синусов, ни косинусов. Если взглянуть трезво на нашу повседневную жизнь, то вся наша повседневная математика остается где-то на уровне знаний Древней Греции. Нам хватает с головой.

Так зачем же нужны синусы и косинусы? По сравнению с Древней Грецией, у нас сегодня имеется очень много разных штучек, о которых древние греки даже мечтать не могли. Даже их Боги не ездили на машинах, не пользовались мобильной связью, не общались по Интернету. Зато всё это есть у нас и мы постоянно этим пользуемся. Откуда же всё это невиданное богатство взялось? Его создали мы сами. Сперва ученые делали научные открытия. Потом инженеры, на основании сделанных учеными открытий, создавали всякие полезные штуки. Мы сегодня этими штуками пользуемся, не имея ни малейшего понятия о том, что находится внутри этих штук и какие научные законы положены в основу их работы. Так вот, если бы не было синусов и косинусов, не было бы и всех этих клевых штук.

Наиболее эффективно синусы и косинусы применяются учеными и инженерами. Я не скажу, что они непрерывно только тригонометрическими функциями пользуются. Нет, они используют их редко, но метко. Синусы и косинусы часто присутствуют в формулах разных расчетов, инженерных или научных.

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Взрослые иногда занимаются синусами и косинусами тогда, когда их детям-школьникам необходима помощь при подготовке домашних заданий.

Всё! Остальным синусы и косинусы не нужны вообще! В повседневной жизни большинство людей почти никогда их не используют. Если я ошибаюсь, поправьте меня.

Так зачем тогда вообще учить эти синусы и косинусы? Ну, во-первых, такова школьная программа. Во-вторых, если вам в жизни понадобится применить синус или косинус, вы уже знаете, что это такое и где нужно искать информацию о них. Полученных в школе знаний вам вполне хватит, что бы самостоятельно во всем разобраться.

Так что же такое синусы, косинусы и другие тригонометрические функции? Это математический инструмент, которым нужно уметь пользоваться. То, что мы этим инструментом почти никогда не пользуемся, говорит не о том, что изучать их не надо, а о том, что эффективность применения полученных нами знаний практически равна нулю. Но это уже совсем другая тема.

Источник

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

0
0
0
0
0

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача решается за четыре секунды.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Найдем по теореме Пифагора.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Источник

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Данные определения даны для острого угла прямоугольного треугольника!

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Угол поворота

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

Синус (sin) угла поворота

При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Основные функции тригонометрии

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть фото Для чего нужны синусы косинусы и тангенсы котангенсы. Смотреть картинку Для чего нужны синусы косинусы и тангенсы котангенсы. Картинка про Для чего нужны синусы косинусы и тангенсы котангенсы. Фото Для чего нужны синусы косинусы и тангенсы котангенсы

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *