Для чего нужны vlan
Для чего нужны vlan
Локальные сети давно перестали состоять из нескольких абонентских устройств, расположенных внутри одного помещения. Современные сети предприятий представляют собой распределенные системы, состоящие из большего количества устройств разного назначения. Ситуация вынуждает разделять такие большие сети на автономные подсети, в итоге логические структуры сети отличаются от физических топологий. Подобные системы создаются с помощью технологии VLAN (Virtual Local Area Network – виртуальная локальная сеть), которая позволяет разделить одну локальную сеть на отдельные сегменты.
Зачем нужна технология VLAN?
Технология VLAN обеспечивает:
Как работает технология VLAN?
У каждой VLAN-подсети есть свой идентификатор, по которому определяется принадлежность той или иной подсети. Информация об идентификаторе содержится в теге, который добавляется в тело Ethernet-фрейма сети, в которой внедрено разделение на подсети VLAN.
Самый распространенный стандарт, описывающий процедуру тегирования трафика, – это открытый стандарт 802.1 Q. Кроме него есть проприетарные протоколы, но они менее популярны.
Формат Ethernet – фрейма после тегирования:
Тег размером 4 байта состоит из нескольких полей:
Именно по тегу сетевое оборудование определяет принадлежность пакета той или иной сети VLAN, осуществляет фильтрацию пакетов и определяет дальнейшие действия с ними: снять тег и передать на конечное оборудование, отбросить пакет, переслать следующему получателю с сохранением тега. Правила, определяющие действия с пакетом на основе тега, зависят от режима работы порта сетевого оборудования. В свою очередь, режим работы выбирается в соответствии с характеристиками подключаемого оборудования. В системе может присутствовать как оборудование с поддержкой технологии VLAN, так и без нее.
Режимы работы портов коммутаторов
Тип Access назначается порту коммутатора, к которому подключено либо единичное абонентское устройство, либо группа устройств, находящихся в одной подсети. Кроме выбора режима работы порта Access необходимо указать идентификатор VLAN-подсети, к которой будет принадлежать оборудование, находящееся за этим портом.
Коммутатор, получив в порт Access данные от подключенных к нему абонентских устройств, добавит ко всем Ethernet-кадрам общий тег с заданным идентификатором подсети и далее будет оперировать уже тегированным пакетом. Напротив, принимая из основной сети данные, предназначенные Access-порту, коммутатор сверит идентификатор VLAN принимаемого пакета с номером VLAN-подсети этого порта. Если они совпадут, то данные будут успешно переданы в порт, а тег удалён, таким образом, подключенные к порту устройства продолжат работать без необходимости поддержки VLAN. Если же идентификатор не равен номеру подсети, кадр будет отброшен, не позволив передать пакет из «чужой» подсети VLAN.
Помимо задания режима работы и идентификатора VLAN, при конфигурировании Trunk-портов создается список разрешенных для передачи подсетей VLAN, с которым коммутатор сверяется при получении пакетов. Благодаря этому через Trunk-порты могут передаваться пакеты нескольких VLAN-подсетей.
Коммутатор, получив в порт Trunk нетегированные данные, поступит аналогично Access-порту, т.е. промаркирует пакеты идентификатором VLAN-подсети, присвоенном этому порту, и передаст дальше в сеть. При получении пакета с таким же идентификатором VLAN, как и у самого порта, тег будет снят и данные отправлены на абонентское устройство без тега. В случае получения тегированного пакета с идентификатором VLAN, отличающимся от номера, присвоенного порту, коммутатор сравнит идентификатор со списком разрешенных VLAN-подсетей. Если номер будет указан в списке, то данные будут переданы по сети на следующее устройство без изменения тега. В случае, если идентификатор указывает на принадлежность незнакомой подсети VLAN, то пакет будет отброшен.
VLAN на коммутаторах Moxa
ЗАДАЧА:
Необходимо построить общую сеть предприятия с разграничением доступа между технологической сетью, предназначеной для управления и мониторинга технологическими процессами и сетью общего назначения. Кроме того, оборудование одной подсети установлено на территориальном удалении друг от друга.
Организовать подобную систему можно с помщою технологии VLAN. Рассмотрим пример реализации данной задачи на коммутаторах Moxa EDS-510E-3GTXSFP.
Технологию VLAN поддерживают все управляемые коммутаторы Moxa.
Оборудование, которое должно находиться в технологической сети (компьютеры A и C), отнесем в подсеть с идентификатором VLAN 10. Оборудование сети общего назначения отнесем в подсеть с идентификатором VLAN 20 (компьютеры B и D). Обмен между этими подсетями происходить не будет. В то же время из-за удаленного расположения устройств оборудование одной VLAN-подсети подключено к разным коммутаторам и необходимо обеспечить обмен данными между ними. Для этого объединим коммутаторы с помощью Trunk портов и поместим их в отдельную подсеть с идентификатором VLAN 30.
Конфигурирование коммутаторов:
Кроме того, следует обратить внимание на параметр Management VLAN ID – подсеть управления коммутатором. Компьютер, с которого необходимо управлять и следить за состоянием самих коммутаторов, должен находиться в подсети управления, указанной в Management VLAN ID. По умолчанию Management VLAN но для предотвращения несанкционированного доступа к коммутаторам рекомендуется идентификатор VLAN управления менять на любой свободный.
Обмен данными в сети предприятия будет осуществляться в соответствии с правилами обработки пакетов.
Правила обработки пакетов для портов Access
Правила обработки пакетов для портов Trunk
Таким образом, технология VLAN позволит создать гибкую систему предприятия с объединением удаленного оборудования и разграничением доступа между функциональными сегментами сети.
Записки IT специалиста
Технический блог специалистов ООО»Интерфейс»
VLAN для начинающих. Общие вопросы
Виртуализацией сегодня уже никого не удивить. Эта технология прочно вошла в нашу жизнь и помогает более эффективно использовать имеющиеся ресурсы, а также обеспечивает достаточную гибкость в изменении существующей конфигурации, позволяя перераспределять ресурсы буквально налету. Не обошла виртуализация и локальные сети. Технология VLAN (Virtual Local Area Network) позволяет создавать и гибко конфигурировать виртуальные сети поверх физической. Это позволяет реализовывать достаточно сложные сетевые конфигурации без покупки дополнительного оборудования и прокладки дополнительных кабелей.
Прежде чем продолжить сделаем краткое отступление о работе локальных сетей. В данном контексте мы будем говорить об Ethernet-сетях описанных стандартом IEEE 802.3, куда входят всем привычные проводные сети на основе витой пары. Основой такой сети является коммутатор (свич, switch), который работает на втором уровне сетевой модели OSI (L2).
Коммутатор анализирует заголовки каждого входящего кадра и заносит соответствие MAC-адреса источника в специальную MAC-таблицу, после чего кадр, адресованный этому узлу, будет направляться сразу на определенный порт, если МАС-адрес получателя неизвестен, то кадр отправляется на все порты устройства. После получения ответа коммутатор привяжет MAC-адрес к порту и будет отправлять кадры только через него.
Как мы уже говорили выше, к широковещанию прибегает сам коммутатор, когда получает кадр MAC-адрес которого отсутствует в MAC-таблице, а также узлы сети, отправляя кадры на адрес FF:FF:FF:FF:FF:FF, такие кадры будут доставлены всем узлам сети в широковещательном сегменте.
А теперь вернемся немного назад, к доменам коллизий и вспомним о том, что в нем может передаваться только один кадр одновременно. Появление широковещательных кадров снижает производительность сети, так как они доставляются и тем, кому надо и тем, кому не надо. Делая невозможным в это время передачу целевой информации. Кроме того, записи в MAC-таблице имеют определенное время жизни, по окончании которого они удаляются, что снова приводит к необходимости рассылки кадра на все порты устройства.
Чем больше в сети узлов, тем острее стоит проблема широковещания, поэтому широковещательные домены крупных сетей принято разделять. Это уменьшает количество паразитного трафика и увеличивает производительность, а также повышает безопасность, так как ограничивает передачу кадров только своим широковещательным доменом.
Как это можно сделать наиболее простым образом? Установить вместо одно коммутатора два и подключить каждый сегмент к своему коммутатору. Но это требует покупки нового оборудования и, возможно, прокладки новых кабельных сетей, поэтому нам на помощь приходит технология VLAN.
Давайте рассмотрим, как работает коммутатор с виртуальными сетями. В нашем примере мы возьмем условный 8-портовый коммутатор и настроим на нем три порта на работу с одним VLAN, а еще три порта с другим.
Каждый VLAN обозначается собственным номером, который является идентификатором виртуально сети. Порты, которые не настроены ни для какого VLAN считаются принадлежащими Native VLAN, по умолчанию он обычно имеет номер 1 (может отличаться у разных производителей), поэтому не следует использовать этот номер для собственных сетей. Порты, настроенные нами для работы с VLAN, образуют как-бы два отдельных виртуальных коммутатора, передавая кадры только между собой. Каким образом это достигается?
В порт, принадлежащий определенному VLAN, могут быть отправлены только пакеты с тегом, принадлежащим этому VLAN, остальные будут отброшены. Фактически мы только что разделили единый широковещательный домен на несколько меньших и трафик из одного VLAN никогда не попадет в другой, даже если эти подсети будут использовать один диапазон IP. Для конечных узлов сети такой коммутатор нечем ни отличается от обычного. Вся обработка виртуальных сетей происходит внутри.
Такие порты коммутатора называются портами доступа или нетегированными портами (access port, untagged). Обычно они используются для подключения конечных узлов сети, которые не должны ничего знать об иных VLAN и работать в собственном сегменте.
А теперь рассмотрим другую картину, у нас есть два коммутатора, каждый из которых должен работать с обоими VLAN, при этом соединены они единственным кабелем и проложить дополнительный кабель невозможно. В этом случае мы можем настроить один или несколько портов на передачу тегированного трафика, при этом можно передавать как трафик любых VLAN, так и только определенных. Такой порт называется магистральным (тегированным) или транком (trunk port, tagged).
Магистральные порты используются для соединения сетевого оборудования между собой, к конечным узлам сети тегированный трафик обычно не доставляется. Но это не является догмой, в ряде случаев тегированный трафик удобнее доставить именно конечному узлу, скажем, гипервизору, если он содержит виртуальные машины, принадлежащие разным узлам сети.
Так как кадр 802.1Q отличается от обычного Ehternet-кадра, то работать с ним могут только устройства с поддержкой данного протокола. Если на пути тегированного трафика попадется обычный коммутатор, то такие кадры будут им отброшены. В случае доставки 802.1Q кадров конечному узлу сети такая поддержка потребуется от сетевой карты устройства. Если на магистральный порт приходит нетегированный трафик, то ему обычно назначается Native VLAN.
Как работает эта схема? Допустим ПК из синей сети (VLAN ID 40), хочет обратиться к другому узлу синей сети. IP-адрес адресата ему известен, но для того, чтобы отправить кадр нужно знать физический адрес устройства. Для этого ПК источник делает широковещательный ARP-запрос, передавая в нем нужный ему IP-адрес, в ответ на него обладатель этого IP сообщит ему собственный MAC-адрес.
Все кадры, попадающие с порта доступа в коммутатор, получают тег с VLAN ID 40 и могут покинуть коммутатор только через порты, принадлежащие этому VLAN или транк. Таким образом любые широковещательные запросы не уйдут дальше своего VLAN. Получив ответ узел сети формирует кадр и отправляет его адресату. Далее в дело снова вступают коммутаторы, сверившись с MAC-таблицей они отправляют кадр в один из портов, который будет либо принадлежать своему VLAN, либо будет являться магистральным. В любом случае кадр будет доставлен по назначению без использования маршрутизатора, только через коммутаторы.
Совсем иное дело, если узел одного из VLAN хочет получить доступ к узлу другого VLAN. В нашем случае узел из красной сети (VLAN ID 30) хочет получить доступ к узлу синей сети (VLAN ID 40). Узел источник знает IP-адрес адресата и также знает, что этот адрес не принадлежит его сети. Поэтому он формирует IP-пакет на адрес основного шлюза сети (роутера), помещает его в Ethernet-кадр и отправляет на порт коммутатора. Коммутатор добавляет к кадру тег с VLAN ID 30 и доставляет его роутеру.
Роутер получает данный кадр, извлекает из него IP-пакет и анализирует заголовки. Обнаружив адрес назначения, он сверяется с таблицей маршрутизации и принимает решение куда отправить данный пакет дальше. После чего формируется новый Ethernet-кадр, который получает тег с новым VLAN ID сети-получателя в него помещается IP-пакет, и он отправляется по назначению.
Таким образом любой трафик внутри VLAN доставляется только с помощью коммутаторов, а трафик между VLAN всегда проходит через маршрутизатор, даже если узлы находятся в соседних физических портах коммутатора.
Говоря о межвлановой маршрутизации нельзя обойти вниманием такие устройства как L3 коммутаторы. Это устройства уровня L2 c некоторыми функциями L3, но, в отличие от маршрутизаторов, данные функции существенно ограничены и реализованы аппаратно. Этим достигается более высокое быстродействие, но пропадает гибкость применения. Как правило L3 коммутаторы предлагают только функции маршрутизации и не поддерживают технологии для выхода во внешнюю сеть (NAT) и не имеют брандмауэра. Но они позволяют быстро и эффективно осуществлять маршрутизацию между внутренними сегментами сети, в том числе и между VLAN.
Маршрутизаторы предлагают гораздо большее число функций, но многие из них реализуются программно и поэтому данный тип устройств имеет меньшую производительность, но гораздо более высокую гибкость применения и сетевые возможности.
При этом нельзя сказать, что какое-то из устройств хуже, каждое из них хорошо на своем месте. Если мы говорим о маршрутизации между внутренними сетями, в том числе и о межвлановой маршрутизации, то здесь предпочтительно использовать L3 коммутаторы с их высокой производительностью, а когда требуется выход во внешнюю сеть, то здесь нам потребуется именно маршрутизатор, с широкими сетевыми возможностями.
Помогла статья? Поддержи автора и новые статьи будут выходить чаще:
Или подпишись на наш Телеграм-канал:
Виртуальная локальная сеть VLAN — Объясняем на картинках
Что такое Virtual local area network (VLAN) это виртуальная локальная сеть, позволяющая делить 1 физическую сеть на некоторое количество других логических сетей, которые работают вне зависимости друг от друга. Надеюсь вы прочитали статью про модель открытых систем OSI, так как технология vlan реализуется коммутаторами и находится на канальном уровне модели.
Для чего нужна vLan?
Зачем делить 1 сеть на несколько изолированных частей? К примеру, когда строят сеть для большой компании, известно, что каждый отдел хочет иметь свою собственную сеть, которая разделена от других.
Конечно, можно создать отдельную физическую сеть на основе отдельных коммутаторов. Но если строить сеть огромного бизнес-центра, то мы заранее не поймем сколько будет арендаторов, сколько квадратных метров им будет нужно. Следовательно, нужно построить одну большую сеть для всего бизнес-центра, а потом логически делить ее на отдельные части в зависимости от нужды арендаторов.
Преимущества деления и изоляции vlan
Во-первых, безопасность. Если ты арендуешь помещение в каком-либо здании, тебе необходимо, чтобы данные были недоступны для других арендаторам.
Во-вторых, это распределение нагрузки. Например, рядом с вами в организации работает команда, которая занимается разработкой сетевых протоколов, и они активно работают. Вдруг, в их эксперименте что-то пошло не так, и вся сеть компании упала. Соответственно, вы не хотите, чтобы их действия повлияли на работу вашей сети.
В-третьих, ограничение широковещательного трафика. Если коммутатор не может найти в каком порту находится получатель, то он отправляет этот кадр на все порты. В сети с огромным множеством компьютеров такого широковещательного трафика много и он занимает высокий % нагрузки сети. А если вы изолируете сеть, то широковещательный трафик будет распространяться в рамках этой изолированной сети и объем трафика сокращается.
VLAN в коммутаторах
В большинстве случаев, чтобы обозначить виртуальные сети, используют различные цвета. К примеру, у нас есть ноутбуки, которые подключены к единственному коммутатору. Порты коммутатора отмечены разными цветами в зависимости, в какой vlan они входят. Порты, которые синим цветом входят в синий vlan, соответственно жёлтые в жёлтый. Ноутбуки, которые находятся в синем vlan могут взаимодействовать, друг с другом и не могут отправить никаких данных ноутбукам, которые находятся в желтом vlan и наоборот.
Как это работает?
В таблице коммутации, на рисунке ниже, есть поле в котором написано “идентификатор VLAN”, как правило для этих целей используют обычные числа.
По таблице смотрим, что порт 1 и 5 входят в vlan №2, а порты 2-4 в vlan №3. Если компьютеры подключенные к порту 1 и входящие в vlan 2 попытаются переслать данные к компьютеру подключенному к порту 4 входящий в вилан 3, то даже если компьютер отправителя знает MAC-адрес компьютера получателя, коммутатор не передаст этот кадр. Потому что порты находятся в разных виртуальных сетях и передача данных между ними невозможна.
Хорошо, когда сеть построена на одном коммутаторе, тогда подойдет вариант с таблицей коммутации и номерами vlan. Что делать, если в сети используются 2 или более коммутаторов? При отправлении кадров от одного коммутатора к другому, нужна информация к какому вилэну принадлежит передаваемый кадр. Информацию о № vlan нужно включать в отправляемый кадр, альтернативного варианта получить эту информацию у принимающего коммутатора нет.
С противоположной стороны, формат кадра Ethernet задан стандартом IEEE и в нем нет места для идентификатора VLAN. Чтобы включить № вилан в Ethernet кадр, нужно было изменить формат. Это изменение было предложено в стандарте IEEE 802.1Q. Но было нельзя просто добавить отдельное поле для номера вилан, потому что нужно обеспечить согласование со всем существующим оборудованием.
В стандарте IEEE 802.1Q в поле тип кадра, было предложено, вместо протокола верхнего уровня вставить специальное значение в шестнадцатеричном виде 8100 — это показатель того, что кадр содержит номер вилана. Далее в части, где в стандартном кадре Ethernet должны находиться данные, есть поле из 2-х байт, которое содержит номер вилана — Тег и еще одно поле из двух байт, куда записывается код протокола вышестоящего уровня.
Чтобы передавать данные размером 1500 байт в кадрах с идентификатором вилана, max длина кадра была увеличена на четыре байта.
Передача данных с использованием стандарта IEEE 802.1Q
Сетевой адаптер в ноутбуке генерит Ethernet кадр, внутри которого вложен IP пакет, в поле “Тип” — код протокола уровня выше, содержится значение 0800.
Коммутатор получает этот кадр, и понимает, что он был получен с ноутбука входящего в желтый вилан. Например, номер желтого вилана 2. Коммутатор добавляет служебные поля, в поле “Тип” протокола следующего уровня, значение 0800 заменяется на 08100. Потом добавляется номер вилана 2 и записывается код протокола следующего уровня 0800, для того, чтобы его, в дальнейшем можно было восстановить.
Принимающий информацию коммутатор извлекает эту информацию о vlan, осознает, что кадр был отправлен вилэн с номеров 2, т.е. в желтый вилан. Затем этот коммутатор удаляет из кадра информацию о номере вилэн и восстанавливает старое значение протокола следующего уровня 0800, что соответствует IP.
И вот такой кадр отправляет принимающему ноутбуку. Сейчас почти все сетевые адаптеры поддерживают стандарт 802.1Q и уже сам ноутбук может вставить нужные поля с номером вилана в кадр.
Заключение
Твой Сетевичок
Все о локальных сетях и сетевом оборудовании
Что такое vlan: технология и настройка
На страницах нашего сайта мы неоднократно использовали термин VLAN в инструкциях по настройке различных роутеров и созданию корпоративной сети. Однако современная vlan технология требует детального изучения, поэтому следующий цикл статей посвящен характеристике и настройке «влан» на различных устройствах.
Данный материал является своего рода «вступительным словом», и здесь мы рассмотрим, что такое VLAN и как технология VLAN помогает в настройке сети.
Vlan: что это такое?
VLAN – технология, позволяющая сконфигурировать несколько виртуальных широковещательных доменов в рамках одного физического широковещательного домена.
Другими словами, имея «плоскую» физическую сеть из нескольких или одного коммутатора, можно разделить ее на несколько изолированных друг от друга полноценных «плоских» сетей, таким образом разграничив ПК пользователей по признаку принадлежности к определенному отделу или же в случае с серверами – по определенным ролям и специфике их работы.
В таком случае решаются одновременно несколько проблем:
Сетевая архитектура использует VLAN для обеспечения сетевой сегментации сервисов, обычно осуществляемой маршрутизаторами, которые фильтруют широковещательный трафик между разными VLAN-ми, улучшают безопасность сети, выполняют агрегацию подсетей и снижают перегрузку в сети. Коммутаторы не могут передавать трафик между VLAN-ами ввиду ограничения, накладываемого широковещательным доменом.
Некоторые коммутаторы могут иметь функции 3-го сетевого уровня модели OSI, храня и используя таблицу маршрутизации для осуществления передачи трафика между подсетями. В таком случае на коммутаторе создается виртуальный интерфейс конкретного VLAN с определенным ip-адресом и маской подсети. Такой интерфейс выступает в роли шлюза по умолчанию для устройств, находящихся в данном VLAN.
Для чего нужен vlan?
В сетях, основанных на широковещательном трафике, передающемся ко всем устройствам для нахождения пиров, с ростом количества пиров растет и количество широковещательного трафика (который потенциально может почти полностью вытеснить собой полезную нагрузку на сеть).
VLAN-ы же помогают снизить сетевой трафик формированием нескольких широковещательных доменов, разбивая большую сеть на несколько меньших независимых сегментов с небольшим количеством широковещательных запросов, посылаемых к каждому устройству всей сети в целом.
Технология VLAN также помогает создать несколько сетей 3-го уровня модели OSI в одной физической инфраструктуре. Например, если DHCP-сервер, раздающий ip-адреса, включен в коммутатор в определенном VLAN – устройства будут получать адреса только в рамках данного VLAN. Если же DHCP-сервер включен транком с набором из нескольких VLAN – устройства из всех этих VLAN смогут получить адреса.
VLAN работает на 2-м, канальном, уровне сетевой модели OSI, аналогично IP-подсетям, которые оперируют на 3-м, сетевом, уровне. Обычно каждому VLAN соответствует своя IP-подсеть, хотя бывают и исключения, когда в одном VLAN могут существовать несколько разных подсетей. Такая технология у Cisco известна как «ip secondary», а в Linux как «ip alias».
В старых сетевых технологиях пользователям присваивались подсети, основываясь на их географическом местоположении. Благодаря этому они были ограничены физической топологией и расстоянием. VLAN технология же позволяют логически сгруппировать территориально разрозненных пользователей в одни и те же группы подсетей, несмотря на их физическое местонахождение. Используя VLAN, можно легко управлять шаблонами трафика и быстро реагировать на переезд пользователей.
Технология VLAN предоставляет гибкую адаптацию к изменениям в сети и упрощает администрирование.
Примеры использования vlan
Пример разделения сети на несколько VLAN по сегментам в зависимости от ролей и используемых технологий:
Наиболее часто используемым стандартом для конфигурации VLAN является IEEE 802.1Q, в то время как Cisco имеет свой собственный стандарт ISL, а 3Com – VLT. И IEEE 802.1Q и ISL имеют схожий механизм работы, называемый “явным тегированием” – фрейм данных тегируется информацией о принадлежности к VLAN. Отличие между ними в том, что ISL использует внешний процесс тегирования без модификации оригинального Ethernet-фрейма, а 802.1Q – внутренний, с модификацией фрейма.