Для чего определяется несущая способность свай по сопротивлению грунта
Как определить несущую способность свай
Несущая способность свай
Определение несущей способности свай необходимо для понимания предельной величины нагрузки, которую должна выдерживать опора после погружения в плотные слои грунта. В процессе исследования этой характеристики учитывают два основных признака – материал изготовления сваи и свойства почв на площадке застройки.
Способы определения несущей способности свайных опор
Максимальная нагрузка на опорное основание рассчитывается еще на этапе разработки проекта и выбора типа свайного фундамента. Специалисты применяют разные методики:
Расчетный способ – с применением формулы
Fd = Yc х (Ycr х R х A + U х ∑ Ycri х fi х li)
Полевой метод пробной статической нагрузки
Через несколько дней после погружения на опору направляется статическая нагрузка ступенчатым домкратом. Затем проводятся измерения прогибометром и рассчитывается значение усадки сваи. Такое исследование – достаточно достоверный вариант определения несущей способности.
Полевой метод динамической (ударной) нагрузки
Измерения также начинают после перерыва («отдыха») сваи. Тяжелая нагрузка – до 10 ударов дизель-молота воздействует на опорный элемент. Затем прогибометром фиксируют изменение положения сваи после каждого удара. Этот вариант обычно используется в сочетании с предыдущим способом статической нагрузки.
Метод зондирования
Выполняется пробное погружение опоры, на которой закреплены специальные датчики, по ударной технологии или вибропогружателями на глубину, предусмотренную проектом. По сигналам датчиков измеряют сопротивление грунта с разных сторон опоры, чтобы получить несущую способность свай для конкретного объекта.
Варианты повышения несущей способности свай
Для опорных конструкций разработаны универсальные способы увеличения несущей способности:
ООО «Точка опоры» – надежный помощник в организации свайных работ. Продажа и доставка свай на объекты, погружение свай – профессионально и оперативно.
Строй-справка.ру
Отопление, водоснабжение, канализация
Несущая способность одиночной сваи определяется из условий работы материала, из которого она изготовлена, и грунта, в который она погружается. Поэтому сопротивление сваи действию вертикальной нагрузки определяется как наименьшая из величин, вычисляемых из условий прочности материала сваи и грунта, удерживающего сваю. В идеальном случае расчетная несущая способность по материалу должна быть равна несущей способности по грунту, однако в реальных условиях такое условие трудновыполнимо, поэтому для получения наиболее экономичного решения необходимо стремиться, чтобы полученные расчетные несущие способности были максимально близкими. Несущую способность свай по грунту и материалу рассчитывают по первой группе предельных состояний.
Несущую способность свай по материалу определяют в фундаментах с низким ростверком из условий прочности в плотных грунтах и устойчивости в слабых — на действие осевой вертикально приложенной сжимаемой силы, как центрально сжатого стержня. В высоких ростверках материал свай рассчитывают на дополнительное действие изгибающих моментов и горизонтальных сил.
Определение несущей способности по грунту свай-стоек.
Определение несущей способности по грунту свай трения. Несущая способность свай трения по грунту зависит от его сопротивления погружению сваи, которое развивается как под нижним концом сваи, так и по ее боковой поверхности.
Достаточно широкое распространение получили следующие методы определения несущей способности: практический, основывающийся на табличных данных СНиПа, динамический, статического зондирования и испытания свай статической нагрузкой.
Формулу (10.6) допускается применять для забивных свай, имеющих квадратное, квадратное с круглой полостью, прямоугольное и полое круглое сечение диаметром до 0,8 м.
Несущую способность набивных свай, в том числе с уширенной пятой, свай-оболочек и свай-столбов также находят по формуле (10.6). Различие заключается в значениях коэффициентов условий работы и расчетного сопротивления грунта под нижним концом сваи. В частности, при опирании на лёссовые и лёссовидные грунты ус=0,8, в остальных случаях уе—1,0. При использовании свай, имеющих камуфлетное упшрение, усЛ=1,3, а при бетонировании свай подводным способом уcR—0,9. Расчетное сопротивление грунта основания R для свай, формируемых в глинистых грунтах, принимают по табличным данным СНиПа, а для песчаных грунтов R определяют по формулам, исходя из условий предельного равновесия массива грунта под сваей. Коэффициент условий работы ус/ находят по таблицам норм в зависимости от способа изготовления свай и типа грунтов строительной площадки.
Примечания:
1. При определении/пласты грунтов следует разделять на однородные слои толщиной не более
2. Расчетное сопротивление плотных песчаных грунтов по боковой поверхности свай и свай-оболочек/следует увеличивать на 30% по сравнению со значениями, приведенными в таблице.
При использовании данных табл. 10.2 и 10.3 глубину погружения нижнего конца сваи и среднюю глубину расположения слоя грунта при планировке срезкой, подсыпкой или намывом до 3 м следует принимать от уровня природного рельефа, а при срезке, подсыпке и намыве от 3 до 10 м от условной отметки, расположенной соответственно на 3 м выше уровня срезки или на 3 м ниже уровня подсыпки. При промежуточных глубинах погружения и показателе текучести значения R и /определяют интерполяцией. Для плотных песчаных грунтов, степень плотности которых определяли по результатам статического зондирования, значение R в табл. 10.2 следует увеличить на 100%. При отсутствии данных статического зондирования для этого типа грунтов значение R увеличивают на 60%, но не более чем до 20 МПа.
Следует заметить, что использование данных табл. 10.1…10.3 для определения несущей способности свай нельзя считать достаточно точными, так как 20%-ная ошибка при определении показателя текучести влечет за собой изменение несущей способности в 1,5 раза и более.
Формулу (10.6) допускается применять для забивных свай, работающих на сжимающую осевую нагрузку и имеющих квадратное, квадратное с круглой полостью и полое круглое сечение диаметром до 0,8 м. Для забивных булавовидных свай на участке ствола периметр и принимают равным периметру ствола, а на участке уширения — периметру поперечного сечения уширения.
Несущую способность пирамидальных, ромбовидных и трапецеидальных свай, погружаемых в песчаные и глинистые грунты, необходимо определять с учетом дополнительного сопротивления грунта, образующегося по их боковой поверхности и определяемого в зависимости от модуля деформаций грунта, получаемого по результатам компрессионных испытаний грунтов.
При ромбовидных сваях боковое сопротивление грунта на участках с обратным наклоном не учитывается.
Для получения более достоверных данных по сравнению с практическим методом несущую способность свай определяют по результатам полевых испытаний динамической или статической нагрузкой, а также статического зондирования грунта.
Динамический метод определения несущей способности свай основывается на существующей зависимости между величиной их погружения и энергией удара молота или расчетной энергией вибропогружателя.
Получение расчетной зависимости для определения несущей способности сваи основывается на предположении о равенстве работы, совершаемой при ударе молота, величине работы, затрачиваемой на погружение сваи, на упругие деформации системы, состоящей из молота, сваи и грунта, а также потерям работы на разрушение головы сваи и превращение механической энергии в тепловую.
Нагрузка прикладывается к свае, погруженной в грунт, рекомендованным в проекте спосрбом с помощью гидравлического домкрата 1 (рис. 10.1, а), располагаемого между сваей и упорной балкой 2, закрепленной с помощью анкерных свай 3. В некоторых случаях для статического нагружения используют платформы с тарированным грузом.
Рис. 10.1. Испытание свай статической нагрузкой: а — схема испытания; б — график зависимости осадки сваи от нагрузки
В общем случае указанная зависимость представляет собой плавную кривую 5 (рис. 10.1,5), состоящую из трех участков. На первом происходят в основном упругие деформации, на втором силы трения существенно возрастают и грунт начинает терять устойчивость. На третьем участке наступает предельное состояние: происходит «срыв» сил трения по боковой поверхности — свая залавливается в грунт, при этом график зависимости s=f(N) обращается в вертикальную линию.
Если осадка, вычисленная по формуле (10.12), оказывается более 4 см, то за Fu следует принимать нагрузку, соответствующую осадке 4 см.
При количестве испытаний менее шести в формуле (10.8) принимают FUi H=Fumia, т. е. нормативное значение считают равным наименьшему предельному сопротивлению сваи, при шести испытаниях и более Fm и yg принимают на основании статической обработки частных значений Fu в соответствии с требованиями действующего ГОСТа.
Метод статического зондирования позволяет определять несущую способность свай в результате опенки сопротивления грунта кЪк под нижним концом сваи, так и по ее боковой поверхности.
Учет отрицательного трения грунта на боковой поверхности свай. Если в пределах длины погружаемой сваи находится слой слабого сильносжимаемого грунта (рис. 10.2), то в случае загружения поверхности грунта некоторой нагрузкой q верхний слой, залегающий над слоем слабого грунта, будет испытьшать осадку большую, чем осадка сваи, перемещаясь относительно сваи вниз. При этом трение, образующееся между боковой поверхностью сваи и грунтом верхнего слоя, будет направлено не вверх, а вниз (рис. 10.2) и будет дополнительно пригружать сваю. Такое трение, имеющее противоположное направление, называют негативным или отрицательным.
Рис. 10.2. Расчетная схема к учету отрицательного трения по боковой поверхности сваи
Отрицательное трение может образовываться в следующих случаях: при планировке территории подсыпкой, если сильносжимае-мые грунты залегают на поверхности; загруже-нием поверхности грунта значительной полезной нагрузкой; искусственного или естественного водопонижения, вызывающего увеличение собственного веса грунта, а также незавершенной консолидации грунтового основания, виброуплотнения грунтов при движении транспорта и работе промышленного оборудования и, наконец, при возведении рядом со свайными фундаментами фундаментов мелкого заложения.
В случае если консолидация грунтов от подсыпки или пригрузки завершилась до начала возведения надземной части здания или если осадка поверхности грунта, окружающего сваи, после указанного периода не будет превышать половины предельно допустимой осадки сооружения, то сопротивление грунта по боковой поверхности сваи допускается определять без учета отрицательного трения вне зависимости от наличия или отсутствия прослоек торфа, причем для последних значение/следует принять равным 0,005 МПа.
Сван, воспринимающие выдергивающие нагрузки. Если на свайный фундамент передаются значительные моменты, то крайние сваи в таком фундаменте в некоторых случаях работают на выдергивание. Анкерные устройства, включая и анкерные сваи, также работают на этот вид нагрузки.
Определение несущей способности сваи
Несущая способность определяется по материалу и грунту. Из двух значений принимается меньшее для расчета. Расчет сваи по прочности производится в соответствии с методами проектирования железобетонных конструкций (ЖБК). Для висячих свай несущая способность по грунту всегда меньше несущей способности по материалу. Для свай-стоек несущая способность по грунту и по материалу примерно одинакова.
Для свай-стоек несущая способность по грунту в соответствии со СНиПом 2.02.03-85 «Свайные фундаменты» определяется по формуле:
,
— несущая способность;
— коэффициент условий работы сваи в грунте;
— расчетное сопротивление грунта;
— площадь поперечного сечения.
Несущая способность висячих свай определяется четырьмя методами:
1) практический – с использованием таблиц СНиПа «Свайные фундаменты»;
3) статического зондирования;
4) испытание свай статической нагрузкой.
5.1.1. Практический метод. Несущая способность несущих свай определяется как сумма двух слагаемых расчетного сопротивления по боковой поверхности и сопротивления под нижним концом сваи:
,
γc – коэффициент условий работы;
γcR – коэффициент, зависящий от вида грунта под нижним концом сваи;
R – расчетное сопротивление грунта под нижним концом сваи;
A – площадь поперечного сечения сваи под нижним концом;
γcRi – коэффициент условий работы грунта по боковой поверхности сваи;
fi – сопротивление грунта по боковой поверхности;
li – длина боковой поверхности сваи (li2 м).
5.1.2. Динамический метод заключается в определении несущей способности сваи по величине отказа сваи после отдыха.
Динамический метод испытывается для контроля фактической несущей способности сваи на строительной площадке. Зная параметры сваебойного оборудования, определяется проектный отказ. Если фактический отказ оказывается больше проектного, то фактическая несущая способность сваи меньше проектной и, соответственно, в проект вносятся изменения.
5.1.3. Метод статического зондирования позволяет раздельно определять сопротивление сваи под пятой и сопротивление сваи по боковой поверхности. При статическом зондировании зонд при помощи домкрата вдавливается с постоянной скоростью 0,5 м/мин и измеряется величина сопротивления грунта погружению конуса и величина трения грунта по боковой поверхности. Замеры производят каждые 20 см. затем строят график.
Бывают следующие виды зондов:
Удельное сопротивление грунта под нижним концом сваи:
,
— переходный коэффициент от сопротивления грунта под зондом при его погружении к сопротивлению грунта под забивной сваей;
— среднее значение сопротивления грунта под наконечником зонда на 1 d выше и 4 d ниже нижнего конца сваи.
Среднее удельное сопротивление грунта по боковой поверхности сваи:
(участки первого типа).
(участки второго и третьего типа).
Частное значение предельного сопротивления в месте зондирования:
Несущая способность сваи:
.
5.1.4. Метод испытания свай статической нагрузкой. Несущая способность сваи определяется путем испытания ее аналога статической нагрузкой.
На свая при помощи домкрата прикладывается ступенями нагрузка. Каждая ступень выдерживается до стабилизирующей осадки, затем строят график зависимости осадки от давления. За несущую способность принимается та, при которой осадка составляет 0,2 от предельно допустимой величины осадки.
Проектирование свайных фундаментов ведется в следующей последовательности:
1) определяется глубина заложения подошвы ростверка. Она не зависти от глубины промерзания грунтов, и определяется исключительно конструктивными потребностями;
2) производится выбор типа сваи, длины сваи и поперечного сечения. Тип и вид сваи выбирается исходя из инженерно-геологических условий в зависимости от сваебойного оборудования. Длина сваи выбирается в зависимости от геологических условий так, чтобы свая прорезала слабые грунты и заглублялась в слой прочных грунтов не менее 1 м. в зависимости от длины сваи выбираются размеры поперечного сечения сваи, выбирается тип и вид сваи;
3) определяется несущая способность сваи. Она определяется одним из четырех методов. Расчетная допустимая нагрузка на сваи определяется по формуле:
,
γn=1,4 при практическом методе;
γn=1,25 при зондировании;
γn=1,1 при статическом методе;
4) определяется количество свай в фундаменте по формуле:
,
Р – расчетная нагрузка;
5) определяются размеры ростверка и производится его конструирование.
Размеры свай в плане:
Если n получилось 3, 1, то принимаем количество свай 4.
Железобетонные ростверки рассчитываются на продавливание колонной, сваей, на изгиб;
6) производится проверка сваи по несущей способности.
Проверка фактической нагрузки, приходящую на сваю:
— при центрально нагруженных свайных фундаментах фактическая нагрузка на сваю определяется по формуле:
— для внецентренно нагруженных фундаментов:
— сумма квадратов расстояний свайного фундамента до оси каждой сваи.
Если условия (*) не выполняются, то увеличивается количество свай.
7) определение осадки свайного фундамента.
Рассматривается условный фундамент, причем считается, что давление, действующее по подошве свайного фундамента, распределяется равномерно.
(для внецентренно нагруженных).
Если условие не выполняется, то увеличивают длину сваи или расстояние между сваями.
Расчет несущей способности сваи по грунту
Сваи широко применяют в строительстве. Они позволяют устраивать фундамент на неустойчивых почвах, ограждать котлованы, возводить подпорные стенки и укреплять грунт.
Это экономичный, устойчивый вариант установки фундамента, применяемый практически в любых условиях.
В статье мы расскажем о видах свай, порядке и различных методах расчета фундамента.
Расчет свай начинается с выбора их типа.
По способу заглубления в грунт различают:
Сваи отличаются по виду конструкции и форме. Это могут быть квадратные, прямоугольные, многоугольные и круглые сечения. Последний вид приобрел наибольшую популярность благодаря простоте изготовления и расчета нагрузки на такую конструкцию.
По характеру работы:
На выбор типа конструкции влияют условия работы, особенности грунтов, конструкция и вес здания. Для правильного расчета необходимо обратиться к специалистам, способным провести все необходимые измерения и изыскания.
Проектирование свайного фундамента
При проектировании свайного фундамента необходимо участь ряд факторов, влияющих на его устойчивость:
При проектировании инженеры опираются на данные геологических изысканий и на их основе определяют возможность строительства, рассчитывают количество свай, выбирают их вид, форму и материал.
Второй важный фактор — это нагрузка от здания.
Она складывается из нескольких видов нагрузки:
Вид сваи зависит от технико-экономических показателей строительства. Подбирается самый дешевый вариант, удовлетворяющий все требования и обеспечивающий надежность конструкции.
На этапе проектирования инженеры предусматривают запас прочности, обеспечивающий длительный срок эксплуатации фундамента даже при больших нагрузках.
Расчет ростверка
Важный показатель для строительства — количество свай в ростверке. Этот показатель напрямую влияет на способность конструкции правильно передавать нагрузку на основание и обеспечивать прочность фундамента.
Ростверк — это балка, соединяющая верхние части свай и равномерно распределяющая между ними нагрузку.
Количество свай в ростверке находят по формуле:
Полученное в результате вычислений число округляется всегда в большую сторону до целого значения.
Сваи распределяют согласно правилам:
При расчетах ростверков инженеры работают, основываясь на СП 63.13330.2012 «Бетонные и железобетонные конструкции».
Алгоритм расчета свайного фундамента
Процесс расчета начинается с определения общего веса здания.
Он состоит из суммы массы всех конструкций:
При расчете толщина каждого слоя конструкции умножается на ее высоту и на плотность. В результате рассчитывается нагрузка на 1 м2 конструкции.
Кратковременные равномерно распределенные нагрузки (вес людей и мебели) берутся с расчетом 150 кг/м2. Сумма нагрузок вычисляется путем умножения значения на общую площадь здания. После этого определяется нагрузка от веса снега. Она будет зависеть от климатического района и форму крыши.
Чем больше угол наклона крыши, тем меньше будет снеговая нагрузка.
После этого определяется несущая способность каждой сваи и их количество в ростверках. Полученные значения дополнительно проверяют и только после этого приступают к дальнейшему проектированию и строительству здания.
Расчет несущей способности по грунту
Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.
Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:
Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.
Это наиболее точный метод:
Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.
После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.
Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.
Он способен:
Расчет сваи-стойки, опирающейся на несжимаемое основание
Данные для расчета берут в СП 24.13330.2011 «Свайные фундаменты».
В таблице указаны значения расчетных сопротивлений свай:
Табличные значения сопротивлений для разных типов грунта
Формула для расчета сваи-стойки:
Результат расчета используется для дальнейшего нахождения количества свай в ростверке.
Заключение
Расчет несущей способности сваи по грунту — это непростой процесс, требующий опыта и внимания со стороны инженеров. Расчет выполняется в несколько этапов, теоретически полученные значения проверяют в ходе полевых испытаний, полностью исключая возможность ошибки.
Расчет свайного фундамента могут выполнять только профессионалы с инженерным образованием и разрешением на подобную деятельность.