Для чего применяются трансформаторы тока различных классов точности
Классы точности ТТ для учета и защиты
Трансформаторы тока играют важнейшую роль в обеспечении безопасности и надежности работы электроустановок. Они обладают определенными классами точности. Виды классов точности трансформаторов тока определяются по гост 7746-2001.
Величины сопротивления нагрузки и первичного тока для разных классов точности ТТ для измерений и для защиты приведены в ГОСТ и в таблице ниже.
Для измерительных цепей и цепей релейной защиты классы точности будут разными. Трансформаторы тока для измерений должны соответствовать одному из классов точности, согласно ГОСТ: 0,1, 0,2S, 0,2, 0,5, 0,5S, 1, 3, 5, 10.
Трансформаторы тока для защиты имеют классы точности – 5Р и 10Р.
Точность работы ТТ зависит от вторичной нагрузки и первичного тока.
1) При малом сопротивлении нагрузки, ветвь намагничивания будет практически зашунтирована, и трансформатор тока будет работать в нижней части кривой намагниченности, что будет соответствовать большим погрешностям.
При большом сопротивлении нагрузки, трансформатор тока будет работать в зоне насыщения ТТ, что также будет соответствовать большим погрешностям. Точность различных классов обеспечивается лишь при определенном значении вторичной нагрузки ТТ.
2) Также точность работы ТТ зависит от величины первичного тока, так как одной из его составляющих является ветвь намагничивания. При малых значениях первичного тока, трансформатор будет работать в нижней части кривой намагниченности, при больших значениях – работа ТТ будет происходить в зоне насыщения.
Класс точности — важнейшая характеристика трансформатора тока
Класс точности трансформатора тока является одной из важнейших характеристик ТТ, которая указывает, что его погрешность измерений не превышает значений, установленных в нормативных документах. Погрешность в свою очередь зависит от многих факторов.
В настоящее время возможно изготовление трансформаторов тока на 6-10кВ с количеством обмоток до четырех, при этом каждая обмотка может быть выполнена со своим классом точности. Например, 0,5/10Р, 0,5S /10Р, 0,2S /0,5/10Р, 0,2S /0,5/5Р/10Р.
Класс точности для каждой обмотки выбирается исходя из ее назначения. Для каждого класса точности предусматривается своя программа испытаний.
Для коммерческого учета, как правило, применяют обмотки с классами точности 0,5S и 0,2S. Буква “S” обозначает, что трансформатор тока проверяется по пяти точкам от 1% до 120% (1-5-20-100-120) от номинального тока. Обмотки классов точности 1, 0,5, 0,2 проверяются лишь в четырех точках: 5-20-100-120% от номинального тока. Для релейной защиты используют обмотки с классами точности 10Р или 5Р и проверяют данные обмотки в трех точках: 50-100-120% от номинального тока трансформатора. Такие обмотки соответствуют классу точности «3».
Более подробно требования к классам точности трансформаторов тока представлены в ГОСТ 7746—2001.
Ниже представлена таблица допустимых погрешностей для различных классов точности:
Допустимые погрешности для различных классов точности ТТ
Требования к классам точности трансформаторов тока представляют собой некий диапазон, в который должны укладываться погрешности трансформатора. Чем выше класс точности, тем уже диапазон.
Разница между классами точности 0,5S и 0,5 (0,2S и 0,2) состоит в том, что погрешность обмотки класса 0,5 не нормируется ниже 5% номинального тока. Видимо поэтому в ПУЭ есть требование, чтобы минимальный ток во вторичной обмотке трансформатора составлял не менее 5%. На мой взгляд, данное требование уже давно устарело, т.к. погрешность трансформаторов тока класса точности 0,5S нормируется начиная с 1%.
Разница между классами точности 0,5S и 0,5
Применение трансформаторов тока классов точности 0,5S и 0,2S позволяет сократить недоучет электроэнергии в несколько раз при малой загрузке силовых трансформаторов.
Какие классы точности имеют трансформаторы тока
Класс точности трансформатора тока – одна из важнейших характеристик ТА, которая показывает, что его погрешность измерений не превышает значений, установленных в нормативных документах. Погрешность зависит от многих факторов.
Условное обозначение ТТ
Классы точности
Класс точности | Для чего предназначены |
---|---|
0,1; 0,2; 0,2S; 0,5; 0,5S; 1; 3; 5; 10 | Эти классы точности предназначены для измерений, коммерческого учёта и для защиты 0,5S и 0,2S. Буква “S” обозначает, что трансформатор тока проверяется по пяти точкам от 1% до 120% (1-5-20-100-120) от номинального тока. Обмотки классов точности 1, 0,5, 0,2 проверяются лишь в четырех точках: 5-20-100-120% от номинального тока |
5Р; 10Р | Для релейной защиты используют обмотки с классами точности 10Р или 5Р и проверяют данные обмотки в трех точках: 50-100-120% |
Классы точности 0,2S и 0,5S предназначены для коммерческого учета электроэнергии, т.е. для счётчиков.
Погрешности
Погрешность измерения – отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Погрешности для измерений, коммерческого учёта и защиты
Угловая и токовые погрешности
Определение погрешностей проводят на каждой вторичной обмотке. Если обмотке присвоено несколько классов точности и/или несколько нагрузок, то при приемо-сдаточных испытаниях определение погрешностей проводят в высшем классе точности в условиях, оговоренных между изготовителем и потребителем, а при других видах испытаний – во всех классах точности и при всех нагрузках, установленных в документации на данный трансформатор.
Требования к классу точности трансформаторов тока для коммерческого учета
В информационно-измерительных цепях понижающие средства играют первую роль. Схема включает в себя приемо-передающие приборы с измерительными устройствами, счетчиками электроэнергии и специализированным программным обеспечением. Однако при высокой погрешности преобразования точность измерительных приборов не имеет смысла. Поэтому классы точности трансформаторов тока с развитием высокоточного оборудования приобретают особую значимость.
Они представляет собой важную характеристику, которая показывает соответствие погрешности измерений номинальным значениям. На нее влияет множество параметров.
Общий принцип работы
Через силовую катушку с некоторым количеством витков проходит ток с преодоление сопротивления в ней. Вокруг нее образуется магнитный поток, который изменяется во времени. Его колебания передаются на перпендикулярный магнитопровод. Такое расположение позволяет снизить потери в процессе преобразований энергий.
За счет колебания магнитного поля во вторичных обмотках генерируется электродвижущая сила. Преодолевая сопротивление, пониженный ток течет по цепи измерительных приборов. Напряжение пропорционально входной нагрузке и зависит от количества витков в первичной катушке. В электромеханике такое соотношение называют коэффициентом трансформации.
Класс точности представляет собой отклонение реальной величины от номинального значения.
Для чего используются
Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.
Понижающие средства разделяют по признакам эксплуатации и предназначены для:
Понижающие средства делят по типу установки: наружные, внутренние, переносные и накладные, а также по типу материалов изоляции, коэффициенту трансформации.
Измерение
Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.
Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.
Защита
Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.
В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.
Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.
Как рассчитать погрешность
Погрешность измерительных трансформаторов определена их конструктивной особенностью. На точность влияет геометрические размеры и формы магнитопроводов, число витков и диаметр провода обмоток. Также большое влияние также оказывает материал, из которого изготовлен магнитопровод.
Такие характеристики электромагнитных материалов при невысоких токах первой обмотки имеют погрешность 1- 5%, поэтому их точность очень низкая. Конструкторы стремятся добиться классности в этом масштабе. Вместо конструкторских сталей применяют аморфные материалы.
Для вычисления класса точности используют следующие формулы:
Погрешности углу и величине тока объясняют воздействие напряжения намагничивания.
Каким требованиям должны соответствовать для коммерческого учета электроэнергии
Современные технологии позволяют изготавливать трансформаторы от 6 до 10 кВ с числом катушек до четырех штук. Каждая катушка имеет свой класс точности. Он подбирается исходя из области применения. Каждая предусматривает свой комплекс тестирования.
Для коммерческих приборов учета используют катушки с классностью 0,2S и 0,5S. Они обладают высокой проницаемостью магнитного поля. Литера «S» указывает на тестирование трансформатора в пяти точках в диапазоне от 1-120% от расчетного напряжения.
Схема проверок выглядит как 1х5х20х100х120. Для классов 1; 0,5 и 0,2 тестирование выполняют по четырем точкам 5х20х100х120%.Для релейной и автоматической защиты используют три точки 50х100х120. Такие трансформатор имеют классность с литерой «З». Требования к классу точности представлены в ГОСТ 7746—2001.
Таблица допустимых погрешностей для коммерческого учета
Для коммерческих приборов учета существует таблица погрешностей.
Класс | Напряжение первичной обмотки в процентах от расчетного значения | Предел погрешности по току в процентах | Предел погрешности по углу |
0,2 | 5 | 0,75 | 30 |
20 | 0,35 | 15 | |
100-120 | 0,2 | 10 | |
0,5 | 5 | 1,5 | 90 |
20 | 0,75 | 45 | |
100-120 | 0,5 | 30 |
Требования, предъявляемые к классу точности преобразователей, представляют собой диапазоны, в которые погрешности должны укладываться. С увеличением точности уменьшается разброс значений.
Разница между преобразователями с маркировкой «S» и без нее, например, 0,5 и 0,5S заключается в том, что первые не нормируют ниже 5% от расчетного тока.
Преимущества использования высокоточных трансформаторов
Измерительные трансформаторы с высоким классом точности имеют ряд преимуществ:
Кто изготавливает
Среди крупных производителей измерительных трансформаторов выделяют:
Что такое трансформатор тока, его конструкция и принцип работы
Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.
Конструкция и принцип действия
Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.
Рис. 1. Трансформатор тока
Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).
Рис. 2. Промышленный керамический трансформатор тока
Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.
Рис. 3. Принципиальная схема трансформатора тока
В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).
Рис. 4. Схематическое изображение ТТ
Рис. 5. Устройство ТТ
Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).
Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.
Принцип действия.
Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.
Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.
На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.
Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.
В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.
Рис. 7. Принцип действия трансформатора тока
На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.
Классификация
Семейство трансформаторов тока классифицируют по нескольким признакам.
Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.
Расшифровка маркировки
Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:
Схемы подключения
Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.
Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.
При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.
Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.
Схема «неполная звезда» применяется для двухфазного соединения.
В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.
Основные схемы подключения:
Технические параметры
Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.
Коэффициент трансформации
Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.
У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.
Класс точности
Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:
Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.
О назначении
Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.