Для чего проверяется коэффициент трансформации

Что такое коэффициент трансформации трансформатора?

Трансформатор — электронное устройство, способное менять рабочие величины, измеряется коэффициентом трансформации, k. Это число указывает на изменение, масштабирование какого-либо параметра, например напряжения, тока, сопротивления или мощности.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Коэффициент трансформации трансформатора

По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.

Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 «Коэффициент трансформации — отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.» Если этот коэффициент k больше 1, то прибор понижающий, если меньше — повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.

На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Определение и формула коэффициента трансформации трансформатора

Получается, что коэффициент — это постоянная величина, показывающая масштабирование электрических параметров, она полностью зависит от конструкторских особенностей устройства. Для разных параметров расчет k производится по-разному. Существуют следующие категории трансформаторов:

Перед определением коэффициента необходимо замерить напряжение на катушках. ГОСТ указано, что производить такое измерение нужно при холостом ходе. Это когда к преобразователю не подключена нагрузка, показания могут быть отображены на паспортной табличке этого устройства.

Затем показания первичной обмотки делят на показания вторичной, это и будет коэффициентом. При наличии сведений о количестве витков в каждой катушке производят дробление числа витков первичной обмотки на число витков вторичной. При этом расчете пренебрегают активным сопротивлением катушек. Если вторичных обмоток несколько, для каждой находят свой k.

Трансформаторы тока имеют свою особенность, их первичная обмотка включается последовательно нагрузке. Перед вычислением показателя k измеряют ток первичной и вторичной цепи. Производят разложение значения первичного тока на ток вторичной цепи. При наличии паспортных данных о количестве витков допускается произвести вычисление k путем деления числа оборотов провода вторичной обмотки на число оборотов провода первичной.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

При расчете коэффициента для трансформатора сопротивления, его еще называют согласующим, сначала находят входное и выходное сопротивление. Для этого вычисляют мощность, которая равняется произведению напряжения и тока. Затем мощность делят на квадрат напряжения и получают сопротивление. Дробление входного сопротивления трансформатора и нагрузки по отношению к его первичной цепи и входного сопротивления нагрузки во вторичной цепи даст k прибора.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Есть другой способ вычисления. Необходимо найти коэффициент k по напряжению и возвести его в квадрат, результат будет аналогичным.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В351015203040506075100
Коэффициент, nНоминальная предельная кратность
3000/5373125201713119865
4000/538322622201513111086
5000/5382925222016141211108
6000/5392825222016151312108
8000/5382120191814141312119
10000/5371615151412121211109
12000/53920191818121514131211
14000/53815151414121312121110
16000/536151413131210101099
18000/54116161515121414131212

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Источник

Проверка коэффициента трансформации

Коэффициент трансформации силовых трансформаторов определяют для проверки соответствия паспортным данным и правильности подсоединения ответвлений обмоток к переключателю. Проверка производится на всех ступенях переключения. Коэффициент трансформации должен отличаться не более, чем на 2% от значений, полученных на том же ответвлении на других фазах, или от данных завода-изготовителя. Для трансформаторов с РПН разница между коэффициентом трансформации не должна превышать значения ступени регулирования.

Из предусмотренных ГОСТ-3484-77 методов определения коэффициента трансформации в практике наладочных работ используется метод двух вольтметров. По этому методу к одной из обмоток трансформатора подводится напряжение и двумя вольтметрами одновременно измеряется подводимое напряжение и напряжение на другой обмотке трансформатора. Подводимое напряжение не должно превышать номинальное и в то же время должно составлять не менее 1% номинального напряжения. Для трехфазных трансформаторов измерения можно проводить при трехфазном и однофазном возбуждении.

При испытаниях трехфазных трансформаторов измеряют линейные напряжения на одноименных зажимах обоих обмоток. Если возможно измерить фазные напряжения, то коэффициент трансформации можно определить по фазным напряжениям одноименных фаз. При однофазном возбуждении трансформатора с соединением обмоток звезда-треугольник коэффициент трансформации измеряют с поочередным закорачиванием одной из фаз, соединенных в треугольник. Измерения проводятся на свободной паре фаз. Коэффициент трансформации определяется по формулам

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Переход к линейному коэффициенту трансформации осуществляется по формуле

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Схемы измерения коэффициентов трансформации однофазных трансформаторов и трехфазных с различными схемами соединения обмоток приведены на рис. 2.4.
Коэффициент трансформации находят для всех ответвлений обмоток и всех фаз. При испытаниях трехобмоточных трансформаторов достаточно определить коэффициент трансформации для двух пар обмоток.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Источник

Испытание силовых трансформаторов 6-10 кВ.

Очень часто в электрических сетях возникает ситуация когда необходимо испытать силовой трансформатор. Такие случаи это аварийное отключение(сгорел предохранитель одной или нескольких фаз, обнаружение локального нагрева шпильки при тепловизионном контроле, нехарактерный звук при работе, жалобы потребителей на нестабильный уровень напряжения), плановые работы при замене трансформатора, вновь вводимые трансформаторы или испытания после среднего ремонта.

Для полноценного испытания трансформатора его необходимо полностью расшиновать(отсоединить шины высокого и низкого напряжения, а также нулевой вывод от заземления и нуля).

Измерение потерь холостого хода.

В эксплуатации такие измерения проводятся только для трансформаторов с мощностью 1000 кВА и более, и только после капитального ремонта, связанного со сменой обмоток или ремонтом магнитопровода. Однако в некоторых случаях, данное измерение способно помощь быстро выявить дефект и на менее мощных трансформаторах.

Измерение потерь ХХ силовых трансформаторов, автотрансформаторов и масляных реакторов необходимо выполнять до испытаний, связанных с воздействием на трансформатор постоянного тока (измерение сопротивления обмоток, определения группы соединения и т.п.), для исключения погрешностей, вызываемых влиянием остаточного намагничивания магнитопровода. Схема для измерения потерь ХХ однофазного трансформатора показана на рисунке 1а, а для измерения потерь в трехфазном трансформаторе — рисунке 1б.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Однако у трансформатора с трехстержневым магнитопроводом потери чаше всего измеряют при однофазном возбуждении, производя три опыта с поочередным замыканием накоротко одной из двух фаз и возбуждением двух других. Потери ХХ определяют, возбуждая обмотку низшего напряжения напряжением 220-380 В. Для вводимых в эксплуатацию трансформаторов измеренные значения потерь ХХ не должны отличаться от заводских данных (частота и подведенное напряжение должны соответствовать заводским) более чем на 5%. В эксплуатации значение потерь ХХ не нормируется. Соотношение потерь ХХ у исправных трансформаторов должно находится в диапазоне от 25 до 50 %.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациихх ав-с0 Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациихх вс-а0 Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациихх ас-в0

U, ВA, АP,Вт
ab-c02200.0520
bc-a02200.0520
ac-b02200.0727

Из таблицы видно, что максимальное расхождение между обмотками по мощности равно 27/20=1.35, это 35% значит данный трансформатор укладывается в пределы от 25 до 50%.

Какие дефекты можно выявить с помощью измерения потерь холостого хода?

Путь магнитного потока при возбуждении выводов АВ и ВС одинаков. Поэтому и мощности потерь для опытов на этих фазах не будут отличаться. При возбуждении фаз АС путь, пройденный магнитным потоком, длиннее, поэтому мощность потерь будет на 25-50% превышать предыдущие. Сравнивая эти показатели, можно выявить, на какой фазе есть дефект обмотки

Измерение сопротивления изоляции силового трансформатора.

Для измерений используется мегаомметр на напряжение 2500 В. Показания мегомметра отсчитываются через 15с (R15) и 60с (R60) после приложения напряжения к обмотке. Коэффициент абсорбции, отношение R60/R15, не нормируется, но во всех случаях он должен быть не менее 1,2. Верхний предел коэффициента абсорбции не ограничивается. Перед началом измерения все обмотки должны быть заземлены не менее чем на 2 мин, а между отдельными измерениями не менее чем на 5 мин. При измерениях трехфазного трансформатора все выводы обмоток одного класса напряжения соединяются вместе.

При измерениях на двухобмоточных трансформаторах мегаомметр подключается минимально по двум схемам. Сначала один из его выводов подключается к обмотке ВН, при этом обмотка НН соединяется с заземленным баком трансформатора и вторым выводом мегаомметра. Затем обмотки меняются местами: заземляется ВН, выводы от прибора подключаются к НН и баку.

Допустимые значения измеренных величин, относящиеся ко всем без исключения обмоткам трансформатора, указаны в таблице.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформацииизмерение сопротивления ВН-НН+бак Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформацииизмерение сопротивления НН-ВН+бак Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформацииизмерение сопротивления ВН+НН-бак

Измерение сопротивления обмоток постоянному току силовых трансформаторов.

Измерения проводятся на всех обмотках трансформатора, а также – на всех положениях ан цапфы(ПБВ) или устройства РПН, регулирующих выходное напряжение трансформатора. При этом перед измерение нужно провести не менее трех полных циклов переключений с использованием этих устройств.

Это выполняется для того, чтобы исключить влияние на результаты измерений переходного сопротивления их контактов.

Для измерений используются мосты или микроомметры, подключаемые по четырехпроводной (мостовой) схеме с целью исключения сопротивления измерительных проводов. Для повышения точности измерений зажимы прибора нужно присоединять не к ошиновке, а непосредственно к шпилькам трансформатора.

Следует учесть, что в момент подключения прибора из-за высокой индуктивности обмоток в них происходит колебательный процесс, в ходе которого показания прибора меняются.

Снимать показания нужно в момент, когда процесс прекратится и данные станут стабильными.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформацииизмерение сопротивления постоянному току

таблицы результатов измерения сопротивлению постоянному току обмоток ВН и НН.

положения ПБВАВ,ОмВС,ОмСА,Ом%
10.4340.4340.4340
20.4220.4220.4220
30.4100.4090.4100.24
40.3980.3980.3980
50.3860.3860.3860
обмоткиа0в0с0%
результат, Ом0.004480.004490.004561.79

Измерения сопротивлению постоянному току показывает состояние контактов переключающего устройства и места соединения обмоток к выводам трансформатора.

Определение коэффициента трансформации силовых трансформаторов.

Измерение коэффициента трансформации выполняется на всех ступенях переключателя ответвлений. Коэффициент трансформации необходимо измерять методом двух вольтметров при одновременном измерении напряжения на обмотках. Испытание производится путем подачи напряжения 380/220В на обмотку высшего напряжения.Схемы определения коэффициента трансформации приведены на рисунке. Для того чтобы не допускать ошибок, при измерении коэффициента трансформации, необходимо производить измерение напряжения одновременно на всех вольтметрах, что важно при возможных колебаниях в сети 380/220 В. Измеренный коэффициент трансформации не должен отличаться более чем на 2% от коэффициента трансформации того же ответвления других фаз.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформацииизмерение коэффициента трансформации Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформацииизмерение коэффициента трансформации прибором коэффициент-3

Проверка группы соединения обмоток.

Проверка группы соединения обмоток трехфазных трансформаторов производится для установления идентичности групп соединения трансформаторов предназначенных для параллельной работы. Проверка производится при монтаже в случае отсутствия паспортных или заводских данных. В эксплуатации проверка производится при ремонтах с частичной или полной сменой обмоток. Схема проверки полярности и группы соединения обмоток приведена на рисунке 3. На обмотку ВН подают напряжение 2-4В постоянного тока, а к обмотке НН попеременно к каждой фазе подключают гальванометр с нулём по средине шкалы. По отклонению стрелки гальванометра вправо или влево и отсутствию отклонения при помощи таблицы 2 определяют группу соединения трансформатора. При определении правильности обозначений выводов необходимо руководствоваться тем, что при одноименных выводах отклонение прибора будет максимальным по сравнению с отклонением прибора при подключении к разноименным выводам.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациирисунок 3. Проверка группы соединения обмоток гальванометром. Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациитаблица 2. зависимость группы от отклонения стрелки гальванометра.

Испытание силовых трансформаторов повышенным напряжением промышленной частоты.

Испытание изоляции обмоток трансформаторов повышенным напряжением переменного тока от постороннего источника производится вместе с вводами. Испытательное напряжение зависит от класса изоляции оборудования. Схема для испытания трансформатора повышенным напряжением частоты 50 Гц показана на рисунке 5. Время испытания составляет 1 мин. При отсутствии испытательной установки необходимой мощности испытание обмоток трансформаторов может не производится. Значение испытательного напряжения частотой 50 Гц приведено в таблице3.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациитаблица 3. испытательное напряжение силовых трансформаторов. Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформациирисунок 5. испытание силового трансформатора повышенным напряжением.

Источник

Что такое коэффициент трансформации — от чего зависит и что показывает

Основной параметр трансформатора

Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Формула

При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.

В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.

Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.

Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.

Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Для силового трансформатора

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Формула по вычислению коэффициента трансформации

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Трансформатор напряжения

Формула для вычисления коэффициента трансформации ТН:

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.

Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки – на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь – подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

От чего зависит величина электродвижущей силы

Величина этой ЭДС (U2) зависит от величины напряжения U1 и соотношения витков первичной и вторичной обмоток, то есть: U2=U1 (N2/ N1).

При этом отношение количества витков вторичной и первичной обмоток Кт данного трансформатора и обозначается n:
n= N2/ N1. Таким образом, коэффициент трансформации — величина, показывающая масштабирующую характеристику ТР относительно какого-нибудь параметра электрической цепи.

Для силовых трансформаторов ГОСТ 16110–82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»

Расчетный коэффициент учета

Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.

На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В351015203040506075100
Коэффициент, nНоминальная предельная кратность
3000/5373125201713119865
4000/538322622201513111086
5000/5382925222016141211108
6000/5392825222016151312108
8000/5382120191814141312119
10000/5371615151412121211109
12000/53920191818121514131211
14000/53815151414121312121110
16000/536151413131210101099
18000/54116161515121414131212

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

В броневом сердечнике магнитные поля оказывают большее влияние на масштабирование.

Как определить этот показатель в цепях передачи мощности

При передаче энергии в конкретную нагрузку стараются согласовать мощность нагрузки во вторичной цепи с мощностью, извлекаемой трансформатором из цепи его первичной обмотки, то есть от источника. Такого согласования можно добиться, используя балластные сопротивления во вторичных цепях, а можно для этого использовать согласующий трансформатор.

Соотношение мощностей в этом случае будет

Соотношение S1 = S2 + ΔS

где S1 — мощность, потребляемая трансформатором из сети и S2 — мощность, отдаваемая трансформатором в нагрузку;

ΔS — потери мощности в самом трансформаторе — обычно их находят как равные 1–2% от мощности.

Пренебрегая этими малыми потерями трансформирующего устройства, получаем зависимости для мощностей

где Z1 — входное сопротивление цепи трансформатора с нагрузкой относительно первичной цепи,

Z2 — входное сопротивление цепи нагрузки трансформатора, подключенной к вторичной обмотке.

Так как цепи согласованы, то

Получается значение еще одного показателя, который называется коэффициентом трансформации по сопротивлению, и такой коэффициент трансформации равен отношению квадратов напряжений на первичной обмотке и на вторичной.

Как определить опытным путем?

В реальных практических случаях не всегда бывает возможно найти коэффициент трансформации чисто аналитическим путем, чему не помогает даже и использование калькуляторов. Например, трансформаторы, имеющие несколько обмоток.

Коэффициент трансформации трехфазного трансформатора, вообще говоря, не один, а несколько, так как трехфазный трансформатор содержит несколько вторичных обмоток, которые намотаны на одном сердечнике.

Или когда мы имеем перед собой трансформатор, но не знаем точное количество витков в обмотках.

Поэтому существуют методы опытного определения, основанные на измерении напряжений на входе трансформатора и напряжения на вторичных обмотках. Такие замеры необходимо делать на холостом ходу, причем одновременно на первичной и на вторичных обмотках. Из них и найдете искомые коэффициенты трансформации. Найденное значение послужит основой для дальнейших расчетов.

Что такое режим холостого хода

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Режим короткого замыкания

В процессе эксперимента можно найти:

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

Приборы подключаются по следующей схеме:

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации
Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

Для чего проверяется коэффициент трансформации. Смотреть фото Для чего проверяется коэффициент трансформации. Смотреть картинку Для чего проверяется коэффициент трансформации. Картинка про Для чего проверяется коэффициент трансформации. Фото Для чего проверяется коэффициент трансформации

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *