Для чего проводят испытания на растяжение
Испытания на растяжение
Испытание на растяжение
Что такое испытание на растяжение?
Испытания на растяжение являются одними из наиболее фундаментальных и распространенных методов механического контроля. При испытании на растяжение применяется растягивающее усилие к материалу и измеряется реакция образца на напряжение. Таким образом, данное исследование определяет насколько прочен материал и насколько он может удлиниться. Испытания на растяжение обычно проводятся на универсальных испытательных машинах, которые являются самым простым и стандартизированным способом произвести данное тестирование.
ООО «Глобалтест» представляет такие компании-производители как Galdabini SPA и Jinan Kason Testing Equipment CO. LTD.
С какой целью проводятся данные испытания?
Мы можем многое узнать о материале из испытаний на растяжение. Измеряя образец во время его растяжения, мы можем получить полные характеристики его свойств на растяжение. При нанесении этих данных на график кривой напряжение/деформация мы можем проследить, как материал реагировал на силу напряжение в каждой точке. Для нас наиболее значимой является точка разрушения, в которой образец разрушается, однако на графике также прослеживается предел пропорциональности, предел текучести, которые предшествуют пределу прочности.
Предел прочности при растяжении
Один из наиболее важных свойств, которые мы можем определить у материала, является его предел прочности при растяжении (UTS). Это максимальное напряжение, которое выдерживает образец во время его испытания. UTS может или не может равняться прочности образца на разрыв, в зависимости от того, является ли материал, из которого изготовлен образец, хрупким, пластичным или обладает свойствами обоих. Иногда материал в лабораторных условиях может быть пластичным, а при вводе его в эксплуатацию и воздействии экстремально низких температур переходить в хрупкое состояние.
Закон Гука
Для большинства материалов в начале испытаний будет прослеживаться линейная зависимость между приложенным усилием или нагрузкой и удлинением. Эта линейная зависимость подчиняется отношению, определяемому как «закон Гука», где отношение напряжения к деформации является постоянным σ/ε = E, где E – это наклон линии в этой области, в которой напряжение σ пропорционально деформации (ε) и называется модулем упругости или модулем Юнга.
Модуль упругости
Модуль упругости – это мера жесткости материала, которая определяется в начальной линейной области кривой. В пределах этой линейной области нагрузка может быть прекращена, и материал в этом случае возвращается к прежнему состоянию, в котором он находился до применения нагрузки. Как только кривая больше не линейна, то закон Гука больше не применяется, и образец уже находится в некоторой деформации. Эта точка, при которой происходит отклонение от линейной зависимости, называется приделом упругости или пропорциональности. С этого момента материал деформируется на любое дальнейшее увеличение нагрузки. Он не вернется к своему первоначальному состоянию, если образец будет снят.
«Предел текучести» материала определяется как напряжение, приложенное к материалу, при котором начинает происходить пластическая деформация.
Метод смещения
Для некоторых материалов (например, металлов или пластмасс) отклонение от линейной зависимости тяжело идентифицировать. Поэтому для определения данного предела используется метод смещения для определения текучести материала. Эта методика обычно применяется для измерения предела текучести металлов. При испытании металлов в соответствии с ASTM E8 / E8M смещение указывается в процентах от деформации (обычно 0,2%). Напряжение (R), которое определяется из точки пересечения «r», когда линия линейной упругой области (с наклоном, равным модулю упругости), оттянутой из смещения «m», становится пределом текучести.
Альтернативные методы
Кривые растяжения некоторых материалов не имеют четко определенной линейной области. В этих случаях стандарт ASTM E111 предусматривает альтернативные методы определения модуля материала, а также модуля Юнга. Этими альтернативными методами являются секущий и касательный методы.
Деформация
Мы также сможем определить величину растяжения или удлинения, которому подвергается образец во время испытания на растяжение. Она может быть выражена как абсолютное изменения длины или как относительное изменение, называемое «деформацией». Абсолютная деформация (Δl) — изменение размера (длины образца при испытаниях на растяжение), относительная деформация (ε) — отношение абсолютной деформации к первоначальной длине (l), т.е. ε = Δl/l.
iSopromat.ru
Лабораторная работа №1 по испытанию на растяжение и разрыв стального образца из малоуглеродистой стали (видео).
Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.
Основные сведения
Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.
Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.
В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).
Рис. 1.1. Образцы для испытания на растяжение
Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:
В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.
В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).
Порядок выполнения и обработка результатов
Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.
Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).
В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.
На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.
Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».
На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.
При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.
Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.
Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.
Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δ l/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.
Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали
Рис. 1.3. Условная диаграмма напряжений при растяжении
Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):
σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;
σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;
σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.
Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);
Рис. 1.4. Определение предела упругости и условного предела текучести
σпч ( σв ) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;
Определяются также характеристики пластичности – относительное остаточное удлинение
где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение
По диаграмме напряжений можно приближенно определить модуль упругости I рода
причем после операции наклепа σпц возрастает на 20-30%.
Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.
Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.
По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали
Контрольные вопросы
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Как и зачем проводятся испытания материалов на растяжение
Опыт применения материалов в машиностроении показывает, что их поведение в конструкциях зависит от целого ряда факторов – скорости и способа приложения нагрузок, температуры, формы изделия, его структуры и т.д. Поэтому проведение механических испытаний материалов позволяет определить его поведение в условиях эксплуатации. Проводя такие испытания, стремятся имитировать условия, возможно более близкие к реальным. Испытание на растяжение – одно из важнейших, поскольку именно в условиях растягивающих усилий большинство материалов обладает наименьшей прочностью.
Цель испытаний
Испытание на растяжение проводят для конструкционных сталей, цветных металлов и их сплавов. Стандартом установлена методика статических испытаний, целью которых является определение следующих механических характеристик:
В ряде случаев исследуются и дополнительные показатели, например, длительная прочность (ползучесть) конструкции.
Предел прочности при растяжении
Данный параметр определяют на разрывных машинах и механическим или – чаще – гидравлическим приводом. Лабораторные установки снабжаются записывающим устройством, которое представляет зависимость «напряжение-деформация/перемещение» в виде графика.
Записанные диаграммы различаются характером перехода необратимых деформаций в деформации разрушения. Постепенный переход от одного участка к другому характерен для пластичных материалов, к которым относится большинство металлов и сплавов. При этом остаточные деформации сравнительно велики, и образуют перед разрывом образца так называемую площадку текучести, когда деформация увеличивается, а прикладываемое усилие практически не изменяется.
Хрупкие материалы разрушаются при малых остаточных деформациях, а площадка текучести отсутствует. К таким материалам относят закалённую и не отпущенную сталь, серый чугун, стекло, бетон и др.
Таким образом, пределом прочности (или временным сопротивлением) называют условное напряжение, которое рассчитывается относительно силы, действующей на образец к к изначальной площади его поперечного сечения. Предел прочности соответствует максимальной нагрузке, которая предшествовала разрушению и определяется в МПа. Визуальной мерой временного сопротивления считается появление местного сужения образца, называемого шейкой. Именно в области шейки растяжение образца происходит наиболее интенсивно.
Испытание на растяжение ГОСТ 1497-84 является обязательным для всех видов конструкционных материалов.
Закон Гука
Это – основной закон, устанавливающий зависимость между напряжениями и деформациями в упругом теле. Закон Гука справедлив для начальных деформаций, которые пропорциональны прикладываемым к телу напряжениям.
Для продольного растяжения критерием пропорциональности вышеуказанных физических величин является показатель упругости, который называется модулем Юнга. Для подавляющего большинства конструкционных материалов модуль Юнга – постоянная величина, характеризующая жёсткость.
В более точных расчётах иногда принимают во внимание температурную зависимость константы упругости, которая, однако, проявляет себя лишь при температурах от 88 К.
Закон Гука справедлив лишь при напряжениях и деформациях, которые не превышают пределов, свойственных данному материалу. На применении этого закона основаны все вычисления, принятые в сопротивлении материалов.
Модуль упругости
Модуль упругости – это характеристика сопротивления материала упругой деформации. Он равен отношению напряжения к вызванной им упругой деформации.
Различают модуль упругости при осевом растяжении (уже описанный ранее модуль Юнга) и модуль упругости при сдвиге, характеризующий касательные напряжения в материале. Иногда, в условиях всестороннего сжатия говрят о модуле объёмной упругости.
Модуль нормальной упругости и модуль сдвига зависят от материала образца. Они важны при расчётах на прочность, жёсткость, устойчивость, а также являются мерой силы межатомной связи. Чем больше модуль упругости, тем меньшую деформацию получает металл при одинаковой нагрузке. Рассматриваемая величина измеряется в МПа или ГПа. Для металлов значение модуля сдвига обычно выше, чем модуля продольной упругости.
Предел текучести
Метод испытания на растяжение не является единственной технологией экспериментального определения эксплуатационных показателей. Важным параметром считается также предел текучести – напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения.
Предел текучести является границей, которая разделяет зоны упругого и упруго-пластического деформирования, которые наблюдались в исследованном образце. Выше этого параметра даже незначительное увеличение напряжений или нагрузок вызывает значительные (и необратимые) деформации образца.
Для материалов, которые не имеют на диаграмме чётко выраженной площадки текучести, принимают так называемый условный предел текучести. Под ним понимают удельную нагрузку, когда необратимые изменения формы превышают установленный максимум. Этот максимум обычно устанавливается техническими условиями на материал и обязательно должен превышать те показатели, которые известны относительно предела упругости.
Критерием остаточной деформации считается удлинение образца на 0,2 %.
Метод смещения
Испытание со смещением на обратный U-образный изгиб в настоящее время разрабатывается как стандарт ISO. Оно используется преимущественно в ядерной промышленности.
Альтернативные методы
Альтернативные методы непрямых испытаний на растяжение включают:
Устройства для таких испытаний используют раздельные захваты, фиксирующие образец. Применяются для оценки прочности горных пород, а также в механике разрушения, при выяснении трещиностойкости конструкций.
Деформация
ГОСТ 1497-84 предусматривает установление двух деформационных характеристик – остаточного сужения образца и и его абсолютного удлинения. Оба показателя оцениваются в процентах или относительных единицах. Являются механическими характеристиками материала, и принимаются во внимание при оценке его способности выполнять поставленные эксплуатационные задачи.
Параметры деформации приводятся для комнатных температур испытывавшихся образцов.
Методы испытания стали
Стальные изделия, используемые для создания строительных конструкций, в процессе эксплуатации испытывают значительные напряжения на растяжение, сжатие, резкие механические воздействия. Прилагаемые усилия могут быть как статическими, так и динамическими. Для обеспечения прочности и долговечности конструкции необходимо использовать металлоизделия с механическими характеристиками, соответствующими запланированным эксплуатационным нагрузкам. Испытания на растяжение – один из наиболее распространенных методов определения марки стали или решения спорных вопросов при расследовании причин возникновения нештатных ситуаций и аварий.
Характеристики, определяемые при статических испытаниях на растяжение
Исследования осуществляются в испытательных машинах с ручным или гидравлическим приводом. Второй вариант обеспечивает возможность создания гораздо большей мощности. По результатам исследований составляют диаграмму растяжения.
При механических статических испытаниях на растяжение, проводимых в соответствии с ГОСТом 1497-84, определяют комплекс свойств стали.
Характеристики прочности
Определение! В законе Гука утверждается, что деформация, образующаяся в упругом теле, прямо пропорциональна прилагаемому усилию.
Характеристики упругости
Характеристики пластичности
Нормативные образцы для проведения статических испытаний на растяжение
Для осуществления испытаний изготавливают образцы круглого или прямоугольного сечения. Нормативы регламентируют как размеры образцов, так и способы механической обработки. Основные условия – однородность размеров по длине, соосность, хорошо обработанная поверхность, на которой должны отсутствовать царапины, порезы. Шероховатость нормируемая.
Длина образцов круглого поперечного сечения:
Чаще всего изготавливают образцы диаметрами 6, 10, 20 мм. Перед началом испытательных работ образцы измеряют в двух взаимно перпендикулярных направлениях в трех местах. Точность измерений – 0,5 мм. Ширину и толщину плоских образцов измеряют по краям и в центре обмеряемой плоскости. Площадь сечения определяется с точностью 0,5%. Точность измерения длины образца – 0,1 мм.
Динамические испытания стальных образцов
Основной вид такого исследования – испытания на изгиб, производимые по ГОСТу 9454-78. При таком виде анализа стальных образцов закон подобия неактуален, поэтому используют образцы с размерами и формой надреза, строго соответствующими нормативам. Основной образец имеет квадратное сечение площадью 10х10 мм и следующие виды надрезов:
В результате динамических испытаний на изгиб рассчитывают величину ударной вязкости – характеристики, которая зависит от сочетания прочностных и пластических свойств стали. Чем она выше, тем надежней материал работает при динамических нагрузках.
Все стали, изделия из которых предназначаются для эксплуатации при динамических нагрузках, подвергаются испытаниям на ударный изгиб. В зависимости от запланированных рабочих условий, ударную вязкость определяют при нормальных, пониженных или повышенных температурах.
Испытание на растяжение
Испытания на растяжение проводятся по ГОСТ 1497, по этому же ГОСТу определяются и образцы на которых проводятся испытания.
Как уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:
Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.
Определяются следующие механические характеристики:
Предел упругости σу — условное напряжение, соответствующее появлению остаточных деформаций определенной заданной величины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформацию указывается в индексе при σу
Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки
Также выделяют условный предел текучести — это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести
где lо – первоначальная расчетная длина образца, а lк – конечная расчетная длина образца