Для чего служат мультивибраторы
Что такое мультивибратор и как он работает
Как работает мультивибратор на транзисторах
Мультивибратор на самом деле работает просто. Во время подключения питания два светодиода периодически загораются и потухают. Частоту переменного переключения светодиодов возможно изменять при помощи емкостей конденсаторов или сопротивления резисторов, подключенных к транзисторам и светодиодам.
Это устройство находится в одном из двух противоположных нестабильных состояний и периодически переходит из одного в другое и снова обратно. Фаза перехода довольно мала относительно большой длительности нахождения в состояниях за счет положительной обратной связи (ПОС), которая охватывает два каскада усиления.
Электрическое напряжение на коллекторе VT2 достаточно невелико (что в свою очередь будет равно падению электрического напряжения на насыщенном транзисторе). C2, заряженный ранее в предыдущем состоянии (полярность как по схеме), медленно начинает разряжаться через открытый транзистор VT2 и резистор R3. Текущее напряжение на базе у транзистора VT1 отрицательно и благодаря этому напряжению он прочно удерживается в закрытом состоянии. Закрытое от напряжения состояние транзистора VT1 сохраняется до того, пока конденсатор C2 не будет перезаряжаться через R3 и напряжение на базе VT1 не начнет достигать порога его полного отпирания (около +0,6 В).
При этом VT1 начинает незамедлительно приоткрываться, и напряжение его коллектора начинает стремительно снижаться, что в свою очередь вызывает необратимое начало запирания VT2, напряжение коллектора транзистора VT2 начинает стремительно увеличиваться, что в свою очередь через конденсатор C2 еще больше открывает VT1. По итогу в транзисторном мультивибраторе происходит лавинообразный регенеративный повторяющийся процесс, приводящий к тому, что VT1 переходит в открытое насыщенное состояние, а VT2 в свою очередь запирается.
Электрические колебательные процессы в схеме будут постоянно и периодически повторяться, в зависимости от емкости и сопротивления компонентов и коэффициентов используемых транзисторов.
Какие параметры возможны у деталей
Параметры резисторов R1 и R4 выбираются меньше, чем у пары R3 и R2. Это нужно для того, чтобы зарядка конденсаторов через R1 и R4 была побыстрее, чем разрядка через R3 и R2. Если дольше будет время зарядки конденсаторов, тогда аналогичными будут фронты импульсов. Но соотношения R3/R1 и R2/R4 не должны быть больше, чем текущие коэффициенты усиления используемых транзисторов. В противном случае транзисторы перестанут полностью открываться.
Можно ли собрать схему самостоятельно
Да, можно. Это устройство отлично подойдет для начинающих и для тех, кто интересуется электроникой.
На этой схеме мало деталей, но работает она просто и надежно. Можно собрать схему и навесным монтажом, на монтажной плате или же попробовать свои силы в изготовлении печатной платы — лазерно утюжная технология (ЛУТ).
По поводу настройки частоты. Можно поменять частоту при помощи емкости и сопротивления. При помощи резисторов намного проще. Достаточно просто поменять обычный резистор на переменный (не подстроечный). Достаточно из контактов 1-2-3 использовать 1-2 или 3-1.
Чем больше сопротивление — тем меньше шаг регулировки. От переменного резистора можно провести провода и визуально наблюдать за изменением частоты.
Печатная плата мультивибратора
Список используемых деталей
C1. C2 | 47 мкФ 16 В |
HL1, HL2 | Любые маломощные светодиоды |
R1, R2 | 30 кОм 0,125 Вт |
R3, R4 | 680 Ом 0.125 Вт |
VT1, VT2 | КТ315 |
Как еще можно собрать мультивибратор
Эту схему можно спаять и на обычной макетной плате
Или навесным монтажом, но будьте внимательны, чтобы не произошло короткого замыкания — делайте соединения ровными и прямолинейными.
Питание схемы
Схему можно включить как от 12 В, так и от 9 В кроны и даже одного аккумулятора 18650.
Принцип работы мультивибратора
Принцип работы мультивибратора
Мультивибратор — это простой генератор прямоугольных импульсов, который работает в режиме автогенератора.
Для его работы необходимо лишь питание от батареи, или другого источника питания.
Работа симметричного мультивибратора основана на зарядно-разрядных процессах конденсаторов, образующих совместно с резисторами RC-цепочки.
Как работает мультивибратор?
В начальный момент подачи питания конденсаторы С1 и С2 разряжены, поэтому их сопротивление току мало. Малое сопротивление конденсаторов приводит к тому, что происходит «быстрое» открывание транзисторов, вызванное протеканием тока:
— VT2 по пути (показано красным цветом): «+ источника питания > резистор R1 > малое сопротивление разряженного С1 > базово-эмиттерный переход VT2 > — источника питания»;
— VT1 по пути (показано синим цветом): «+ источника питания > резистор R4 > малое сопротивление разряженного С2 > базово-эмиттерный переход VT1 > — источника питания».
Поскольку транзистор VT1 закрыт, происходит «быстрый» заряд конденсатора С1 по пути: «+ источника питания > резистор R1 > малое сопротивление разряженного С1 > базово-эмиттерный переход VT2 > — источника питания». Этот заряд происходит почти до напряжения источника питания.
Одновременно происходит заряд конденсатора С2 током обратной полярности по пути: «+ источника питания > резистор R3 > малое сопротивление разряженного С2 > коллекторно-эмиттерный переход VT2 > — источника питания». Длительность заряда определяется номиналами R3 и С2. Они и определяют время, при котором VT1 находится в закрытом состоянии.
Когда конденсатор С2 зарядится до напряжения приблизительно равным напряжению 0,7-1,0 вольт, его сопротивление увеличится и транзистор VT1 откроется напряжением приложенным по пути: «+ источника питания > резистор R3 > базово-эмиттерный переход VT1 > — источника питания». При этом, напряжение заряженного конденсатора С1, через открытый коллекторно-эмиттерный переход VT1 окажется приложенным к эмиттерно-базовому переходу транзистора VT2 обратной полярностью. В результате VT2 закроется, а ток, который ранее проходил через открытый коллекторно-эмиттерный переход VT2 побежит по цепи: «+ источника питания > резистор R4 > малое сопротивление С2 > базово-эмиттерный переход VT1 > — источника питания». По этой цепи произойдёт быстрый перезаряд конденсатора С2. С этого момента начинается «установившийся» режим автогенерации.
Работа симметричного мультивибратора в «установившемся» режиме генерации
Начинается первый полупериод работы (колебания) мультивибратора.
Когда, в результате перезаряда С1, напряжение на базе VT2 достигнет значения +0,6 вольта относительно эмиттера VT2, транзистор откроется. Поэтому, напряжение заряженного конденсатора С2, через открытый коллекторно-эмиттерный переход VT2 окажется приложенным к эмиттерно-базовому переходу транзистора VT1 обратной полярностью. VT1 закроется.
Начинается второй полупериод работы (колебания) мультивибратора.
При открытом транзисторе VT2 и закрытом VT1 происходит быстрый перезаряд конденсатора С1 (от напряжения 0,7…1,0 вольта одной полярности, до напряжения источника питания противоположной полярности) по цепи: «+ источника питания > резистор R1 > малое сопротивление С1 > базо-эмиттерный переход VT2 > — источника питания». Кроме того, происходит медленный перезаряд конденсатора С2 (от напряжения источника питания одной полярности, до напряжения 0,7…1,0 вольта противоположной полярности) по цепи: «правая обкладка С2 > коллекторно-эмиттерный переход транзистора VT2 > — источника питания > + источника питания > резистор R3 > левая обкладка С2». Когда напряжение на базе VT1 достигнет значения +0,6 вольта относительно эмиттера VT1, транзистор откроется. Поэтому, напряжение заряженного конденсатора С1, через открытый коллекторно-эмиттерный переход VT1 окажется приложенным к эмиттерно-базовому переходу транзистора VT2 обратной полярностью. VT2 закроется. На этом, второй полупериод колебания мультивибратора заканчивается, и снова начинается первый полупериод.
Процесс повторяется до момента отключения мультивибратора от источника питания.
Способы подключения нагрузки к симметричному мультивибратору
Прямоугольные импульсы снимаются с двух точек симметричного мультивибратора – коллекторов транзисторов. Когда на одном коллекторе присутствует «высокий» потенциал, то на другом коллекторе – «низкий» потенциал (он отсутствует), и наоборот – когда на одном выходе «низкий» потенциал, то на другом — «высокий». Это наглядно показано на временном графике, изображённом ниже.
Нагрузка мультивибратора должна подключаться параллельно одному из коллекторных резисторов, но ни в коем случае не параллельно транзисторному переходу коллектор-эмиттер. Нельзя шунтировать транзистор нагрузкой. Если это условие не выполнять, то как минимум — изменится длительность импульсов, а как максимум – мультивибратор не будет работать. На рисунке ниже показано, как подключить нагрузку правильно, а как не надо это делать.
Для того, чтобы нагрузка не влияла на сам мультивибратор, она должна иметь достаточное входное сопротивление. Для этого обычно применяют буферные транзисторные каскады.
На примере показано подключение низкоомной динамической головки к мультивибратору. Добавочный резистор повышает входное сопротивление буферного каскада, и тем самым исключает влияние буферного каскада на транзистор мультивибратора. Его значение должно не менее, чем в 10 раз превышать значение коллекторного резистора. Подключение двух транзисторов по схеме «составного транзистора» значительно усиливает выходной ток. При этом, правильным является подключение базово-эмиттерной цепи буферного каскада параллельно коллекторному резистору мультивибратора, а не параллельно коллекторно-эмиттерному переходу транзистора мультивибратора.
Для подключения к мультивибратору высокоомной динамической головки буферный каскад не нужен. Головка подключается вместо одного из коллекторных резисторов. Должно выполняться единственное условие – ток, идущий через динамическую головку не должен превышать максимальный ток коллектора транзистора.
Если вы хотите подключить к мультивибратору обычные светодиоды – сделать «мигалку», то для этого буферные каскады не требуются. Их можно подключить последовательно с коллекторными резисторами. Связано это с тем, что ток светодиода мал, и падение напряжения на нём во время работы не более одного вольта. Поэтому они не оказывают никакого влияния на работу мультивибратора. Правда это не относится к сверхярким светодиодам, у которых и рабочий ток выше, и падение напряжения может быть от 3,5 до 10 вольт. Но в этом случае есть выход – увеличить напряжение питания и использовать транзисторы с большой мощностью, обеспечивающей достаточный ток коллектора.
Обратите внимание, что оксидные (электролитические) конденсаторы подключаются плюсами к коллекторам транзисторов. Связано это с тем, что на базах биполярных транзисторов напряжение не поднимается выше 0,7 вольта относительно эмиттера, а в нашем случае эмиттеры – это минус питания. А вот на коллекторах транзисторов напряжение изменяется почти от нуля, до напряжения источника питания. Оксидные конденсаторы не способны выполнять свою функцию при их подключении обратной полярностью. Естественно, если вы будете применять транзисторы другой структуры (не N-P-N, a P-N-P структуры), то кроме изменения полярности источника питания, необходимо развернуть светодиоды катодами «вверх по схеме», а конденсаторы – плюсами к базам транзисторов.
Разберёмся теперь, какие параметры элементов мультивибратора задают выходные токи и частоту генерации мультивибратора?
На что влияют номиналы коллекторных резисторов? Я встречал в некоторых бездарных интернетовских статьях, что номиналы коллекторных резисторов незначительно, но влияют на частоту мультивибратора. Всё это полная чушь! При правильном расчёте мультивибратора, отклонение значений этих резисторов более чем в пять раз от расчётного, не изменит частоты мультивибратора. Главное, чтобы их сопротивление было меньше базовых резисторов, потому, что коллекторные резисторы обеспечивают быстрый заряд конденсаторов. Но зато, номиналы коллекторных резисторов являются главными для расчёта потребляемой мощности от источника питания, значение которой не должно превышать мощность транзисторов. Если разобраться, то при правильном подключении они даже на выходную мощность мультивибратора прямого влияния не оказывают. А вот длительность между переключениями (частота мультивибратора) определяется «медленным» перезарядом конденсаторов. Время перезаряда определяется номиналами RC цепочек – базовых резисторов и конденсаторов (R2C1 и R3C2).
Мультивибратор, хоть и называется симметричным, это относится только к схемотехнике его построения, а вырабатывать он может как симметричные, так и не симметричные по длительности выходные импульсы. Длительность импульса (высокого уровня) на коллекторе VT1 определяется номиналами R3 и C2, а длительность импульса (высокого уровня) на коллекторе VT2 определяется номиналами R2 и C1.
Длительность перезаряда конденсаторов определяется простой формулой, где Тау – длительность импульса в секундах, R – сопротивление резистора в Омах, С – ёмкость конденсатора в Фарадах:
Таким образом, если вы уже не забыли написанное в этой статье на пару абзацев ранее:
При равенстве R2=R3 и С1=С2, на выходах мультивибратора будет «меандр» — прямоугольные импульсы с длительностью равной паузам между импульсами, который вы видите на рисунке.
Полный период колебания мультивибратора – T равен сумме длительностей импульса и паузы:
Частота колебаний F (Гц) связана с периодом Т (сек) через соотношение:
Как правило, в интернете если и есть какие либо расчёты радиоцепей, то они скудные. Поэтому произведём расчёт элементов симметричного мультивибратора на примере.
Как и любые транзисторные каскады, расчёт необходимо вести с конца — выхода. А на выходе у нас стоит буферный каскад, потом стоят коллекторные резисторы. Коллекторные резисторы R1 и R4 выполняют функцию нагрузки транзисторов. На частоту генерации коллекторные резисторы никакого влияния не оказывают. Они рассчитываются исходя из параметров выбранных транзисторов. Таким образом, сначала рассчитываем коллекторные резисторы, потом базовые резисторы, потом конденсаторы, а затем и буферный каскад.
Мультивибратор в автоколебательном режиме
Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.
Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.
Параеметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:
Период импульсов определяется:
Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).
Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.
На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.
Ждущий мультивибратор
Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение.
Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса.
В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.
Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.
В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.
Блокинг-генераторы
Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.
При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.
Автоколебательный режим
Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.
Схема блокинг-генератора показана на рис. 1.
Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.
Мультивибратор на транзисторах
Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.
Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты. Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.
– двух транзисторов КТ315Б (можно с любой другой буквой)
– двух конденсаторов емкостью по 10 микроФарад
– четырех резисторов, два по 300 Ом и два по 27 КилоОм
ElectronicsBlog
Обучающие статьи по электронике
Что такое мультивибратор? Расчёт мультивибратора
Всем доброго времени суток. В предыдущих статьях я писал о различных преобразователях и формирователях импульсных сигналов. Сегодня вы узнаете, как импульсы образуются, или генерируются.
Существует несколько типов генераторов импульсов различной формы, такие как мультивибратор, блокинг-генератор, ГЛИН, фантастотрон и другие. Все они имеют различное устройство и генерируют различные типы импульсов, и имеют следующие режимы работы:
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
В данной статье я расскажу об одном из простейших генераторов прямоугольных импульсов, который называется мультивибратором. Различают две основные схемы: автоколебательный мультивибратор (или просто мультивибратор) и ждущий мультивибратор.
Схема автоколебательного мультивибратора и принцип её работы
Чаще всего мультивибратор создают с использованием биполярных транзисторов, связь между которыми осуществляется за счёт коллекторно-базовых цепей. Схема симметричного мультивибратора показана ниже.
Схема мультивибратора.
Простейший мультивибратор состоит из следующих основных элементов: транзисторы VT1 и VT2, резисторы R1 и R4 являются коллекторной нагрузкой транзисторов, резисторы R2 и R3 являются элементами частотозадающей цепи и конденсаторы C1 и C2 также являются элементами частотозадающей цепи и связи между транзисторами. По своей сути данная схема представляет собой двухкаскадный усилитель с ОЭ, который охвачен глубокой положительной обратной связью. Для правильного функционирования мультивибратора необходимо, чтобы плечи мультивибратора обладали идентичными параметрами. В частности должны быть одинаковыми транзисторы VT1 и VT2, а в случае симметричного мультивибратора также одинаковые параметры элементов R1 = R4, R2 = R3 и C1 = C2. Опишем принцип работы мультивибратора, основываясь на его временные диаграммы.
Временные диаграммы работы мультивибратора.
Как уже говорилось выше, мультивибратор функционирует в автоколебательном режиме, поэтому для описания работы выделим один период его колебаний. Условно период работы можно разделить на два промежутка: Х1 – Х2 и Х2 – Х3. Давайте рассмотрим их по отдельности, но прежде опишем начальные условия работы.
Как говорилось выше, мультивибратор имеет два плеча, которые обладают некоторой идентичностью, но она мнимая, так как практически невозможно подобрать одинаковые во всем элементы схемы. Поэтому в начальный момент времени, при подаче питания, допустим коллекторный ток транзистора VT1 оказался несколько больше коллекторного тока транзистора VT2. Это вызовет увеличение напряжения на резисторе R1 и уменьшению коллекторного напряжения VT1, а через конденсатор C1 уменьшение на базе транзистора VT2, что в свою очередь уменьшит коллекторный ток транзистора и падение напряжения на резисторе R4. Уменьшение напряжения на R4, в свою очередь, через конденсатор C2 увеличит напряжение на базе VT1, что ещё больше увеличит коллекторный ток VT1, а соответственно и падение напряжения на резисторе R1. Таким образом, транзистор VT1 окажется, насыщен, и ток через него будет ограничен только коллекторным резистором R1, а транзистор VT2 – закрыт, а ток через него практически равен нулю.
Итак мы подошли к моменту времени Х1 на временных диаграммах работы мультивибратора, когда конденсатор C1 начинает заряжаться через открытый транзистор VT1 и резистор R2, а конденсатор C2 начнёт разряжаться через p-n переход база-эмиттер VT1 и резистор R4. По мере заряжания конденсатора C1 напряжение на базе VT2 увеличивается, а напряжение на базе VT1 уменьшается, и в момент времени Х2 произойдёт отпирание транзистора VT2. Вместе с открыванием VT2 произойдёт закрытие транзистора VT1. И таким образом процесс открытия и закрытия транзисторов будет происходить периодически, а на коллекторах транзисторов будут периодически возникать импульсы прямоугольной формы. Параметры импульсов полностью определяются значениями элементов схемы.
Расчет автоколебательного мультивибратора
Для расчёта автоколебательного мультивибратора необходимо задать некоторые исходные параметры: частота импульсов f (или период колебаний T = 1/f), длительность генерируемых импульсов ti, амплитуда импульса Um.
Для примера рассчитаем симметричный автоколебательный мультивибратор с частотой выходных импульсов fi = 1 МГц, амплитудой импульса Um = 5 В.
1.Определим напряжение источника питания ЕК
2.Определим тип транзисторов, которые должны соответствовать следующим значениям
Данным параметрам соответствует транзистор КТ315 со следующими характеристиками: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh21e = 250 МГц, h21e = 20…90 (примем h21e = 50).
3.Определяем сопротивления R1 и R4 в коллекторных цепях транзисторов
где IK imax – максимально допустимый ток коллектора;
IKBO – максимально допустимый обратный ток коллектора.
Исходя из практических соображений для маломощных транзисторов выбирают RK больше (0,5 … 1) кОм, а для мощных транзисторов – не более (200 … 300) Ом.
Так как транзистор КТ315 маломощный, то выберем RK = 3,3 кОм.
4.Выбираем сопротивление резисторов R2, R3 в цепях баз транзисторов
Выберем R2 = R3 = Rb = 4,7 кОм
5.Выбираем ёмкость конденсаторов С1 и С2
В случае если ведётся расчёт для несимметричного мультивибратора с разной длительностью импульсов ti, то рассчитываются отдельно конденсаторы С1 и С2
Схема ждущего мультивибратора и принцип её работы
Наиболее распространённой схемой ждущего мультивибратора является схема на основе биполярных транзисторов с эмиттерной связью между ними. Данная схема представлена на рисунке ниже.
Схема ждущего мультивибратора.
В данной схеме в качестве активных элементов используются транзисторы VT1 и VT2, резисторы R1 и R2 предназначены для установления режима работы транзистора VT1. Резисторы R3 и R6 – коллекторные нагрузки транзисторов, конденсатор C2 и резистор R5 используются для задания параметров импульса, через резистор R4 осуществляется обратная связь по току, конденсатор C1 – элемент цепи запуска ждущего мультивибратора.
Для понимания работы ждущего мультивибратора ниже представлены временные диаграммы его работы.
Временные диаграммы работы ждущего мультивибратора.
При подаче питания на мультивибратор в нём устанавливается начальный режим работы, при котором транзистор VT1 закрыт, а VT2 находится в состоянии насыщения (открыт). Это достигается при помощи элементов цепей питания транзистора VT1 (резисторы R1, R2, R3 и R4). При этом на выходе мультивибратора присутствует небольшой постоянный уровень напряжения, который определяется в основном резистором R4.
Для того что бы ждущий мультивибратор запустился необходимо на его вход через конденсатор C1 подать импульс тока. Конденсатор C1 предназначен для формирования короткого импульса запуска с крутым фронтом. В результате поступления импульса запуска на базу транзистора VT1 в схеме начинает происходить лавинообразный процесс выработки импульса в следующем порядке: через открытый транзистор VT1 и резистор R5 начинает заряжаться конденсатор C2. Так как R5C2 является дифференцирующей цепочкой, то в момент начала заряда конденсатора на базе VT2 резко уменьшится потенциал, а, следовательно, транзистор закроется и на выходе схемы появится уровень напряжения примерно равный напряжению питания. После зарядки конденсатора C2 до уровня отпирания VT2, транзистор откроется и на выходе мультивибратора установится исходное напряжение. Параметры сформированного импульса полностью определятся параметрами схемы и вычисляются по тем же самым формулам, что и для автогенераторного мультивибратора.
Расчёт ждущего мультивибратора
Для расчёта ждущего мультивибратора необходимо задать некоторые исходные данные: амплитуда импульсов Um, длительность импульсов ti, частота запускающих импульсов f.
Для примера рассчитаем ждущий мультивибратор с эмиттерными связями со следующими параметрами: Um = 5 В, длительность импульсов ti = 100 нс, частота запускающих импульсов f = 500 кГц, ток коллектора VT2 Ik = 5 мA.
Определим напряжение питания мультивибратора ЕК
Выбираем тип транзисторов VT1 и VT2
По данным параметрам подходит транзистор КТ315Б со следующими параметрами: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh21e = 250 МГц, h21e = 20…90 (примем h21e = 50).
Определим значение коллекторного резистора R6
Выберем R6 = 3,3 кОм
Определим значение базового резистора R5
Примем значение R5 = 100 кОм
Найдём значение сопротивления эмиттерного резистора R4
Определим значение сопротивление резистора R2
Примем значение R2 = 2,2 кОм
Вычислим значение сопротивления R1
Примем значение R1 = 12 кОм
Найдем значение сопротивления R3
Примем значение R3 = 4,7 кОм
Рассчитаем ёмкость конденсатора С2
Примем значение С2 = 1,5 нФ
Применение мультивибраторов
В практической деятельности мультивибраторы применяют в качестве генераторов импульсов прямоугольной формы, при снятии напряжения с коллекторов транзисторов и пилообразной формы, при снятии напряжения с баз транзисторов. Ждущие мультивибраторы применяются для получения регулируемых по времени временных задержек и импульсов с регулируемой длительностью.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.