Для чего служит катушка индуктивности
Катушка индуктивности
Что такое катушка индуктивности
Индуктивность
Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.
Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:
В — магнитное поле, Вб
А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение
И у нас получится вот такая картина с магнитными силовыми линиями:
Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:
Самоиндукция
Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.
Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:
U — напряжение в катушке, В
R — сопротивление катушки, Ом
Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.
И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности — источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.
То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.
Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.
Типы катушек индуктивности
Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.
Но где у нее сердечник? Воздух — это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.
А вот катушки индуктивности с сердечником:
В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.
Для катушек средней индуктивности используются ферритовые сердечники:
Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.
Дроссель
Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель — это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.
Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:
Также существует еще один особый вид дросселей — это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.
Что влияет на индуктивность?
От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.
Имеется ферритовый сердечник
Начинаю вводить катушку в сердечник на самый край
LC-метр показывает 21 микрогенри.
Ввожу катушку на середину феррита
35 микрогенри. Уже лучше.
Продолжаю вводить катушку на правый край феррита
20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:
1 — это каркас катушки
2 — это витки катушки
3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.
Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки
Индуктивность стала почти 50 микрогенри!
А давайте-ка попробуем расправим витки по всему ферриту
13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».
Убавим витки катушки в два раза. Было 24 витка, стало 12.
Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.
Давайте поэкспериментируем с ферритовым кольцом.
Отдалим витки катушки друг от друга
Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.
Мотнем побольше витков. Было 3 витка, стало 9.
Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.
Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.
Обозначение на схемах
Последовательное и параллельное соединение катушек индуктивности
При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.
А при параллельном соединении получаем вот так:
При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.
Резюме
Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.
Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:
Для чего нужна катушка индуктивности
Стандартная конструкция катушки индуктивности состоит из изолированного провода с одной или несколькими жилами, намотанными в виде спирали на каркас из диэлектрика, имеющего прямоугольную, цилиндрическую или тороидальную форму. Иногда, конструкции катушек бывают бескаркасными. Наматывание провода производится в один или несколько слоев.
Для того, чтобы увеличить индуктивность, используются сердечники из ферромагнитов. Они же позволяют изменять индуктивность в определенных пределах. Не всем до конца понятно, для чего нужна катушка индуктивности. Ее используют в электрических цепях, как хороший проводник постоянного тока. Однако, при возникновении самоиндукции, возникает сопротивление, препятствующее прохождению переменного тока.
Разновидности катушек индуктивности
Существует несколько вариантов конструкций катушек индуктивности, свойства которых определяют и сферу их использования. Например, применение контурных катушек индуктивности вместе с конденсаторами, позволяют получать резонансные контуры. Они отличаются высокой стабильностью, качеством и точностью.
Катушки связи обеспечивают индуктивную связь отдельных цепей и каскадов. Таким образом, становится возможным деление базы и цепей по постоянному току. Здесь не требуется высокой точностью, поэтому, для этих катушек используется тонкий провод, наматываемый в две небольшие обмотки. Параметры данных приборов определяются в соответствии с индуктивностью и коэффициентом связи.
Некоторые катушки используются в качестве вариометров. Во время эксплуатации их индуктивность может изменяться, что позволяет успешно перестраивать колебательные контуры. Весь прибор включает в себя две последовательно соединенных катушки. Подвижная катушка вращается внутри неподвижной катушки, тем самым, создавая изменение индуктивности. Фактически, они являются статором и ротором. Если их положение изменится, то поменяется и значение самоиндукции. В результате, индуктивность прибора может измениться в 4-5 раз.
В виде дросселей используются те приборы, у которых при переменном токе отмечается высокое сопротивление, а при постоянном – очень низкое. Благодаря этому свойству, они используются в радиотехнических устройствах в качестве фильтрующих элементов. При частоте 50-60 герц для изготовления их сердечников применяется трансформаторная сталь. Если частота имеет более высокое значение, то сердечники изготавливаются из феррита или пермаллоя. Отдельные разновидности дросселей можно наблюдать в виде так называемых бочонков, подавляющих помехи на проводах.
Где применяются катушки индуктивности
Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.
Что такое катушка индуктивности и для чего она нужна
Катушки индуктивности нашли широкое применение в электротехнике в качестве накопителей энергии, колебательных контуров, ограничения тока. Поэтому их можно встретить везде, начиная от портативной электроники, заканчивая подстанциями в виде гигантских реакторов. В этой статье мы расскажем, что это такое катушка индуктивности, а также какой у нее принцип работы и многое другое.
Определение и принцип действия
Катушка индуктивности — это катушка смотанного в спираль или другую форму изолированного проводника. Основные особенности и свойства: высокая индуктивность при низкой ёмкости и активном сопротивлении.
Она накапливает энергию в магнитном поле. На рисунке ниже вы видите её условное графическое обозначение на схеме (УГО) в разных видах и функциональных назначениях.
Она может быть с сердечником и без него. При этом с сердечником индуктивность будет в разы больше, чем если его нет. От материала, из которого изготовлен сердечник, также зависит величина индуктивности. Сердечник может быть сплошным или разомкнутым (с зазором).
Напомним один из законов коммутации:
Ток в индуктивности не может измениться мгновенно.
Это значит, что катушка индуктивности — это своего рода инерционный элемент в электрической цепи (реактивное сопротивление).
Давайте поговорим, как работает это устройство? Чем больше индуктивность, тем больше изменение тока будет отставать от изменения напряжения, а в цепях переменного тока — фаза тока отставать от фазы напряжения.
В этом и заключается принцип работы катушек индуктивности – накопление энергии и задерживание фронта нарастания тока в цепи.
Из этого же вытекает и следующий факт: при разрыве в цепи с высокой индуктивностью напряжение на ключе повышается и образуется дуга, если ключ полупроводниковый — происходит его пробой. Для борьбы с этим используются снабберные цепи, чаще всего из резистора и конденсатора, установленного параллельно ключу.
Виды и типы катушек
В зависимости от сферы применения и частоты цепи может отличаться конструкция катушки.
По частоте можно условно разделить на:
Конструкция отличается в зависимости от характеристик катушки, например, намотка может быть однослойной и многослойной, намотанной виток к витку или с шагом. Шаг между витками может быть постоянным или прогрессивным (изменяющимся по длине катушки). Способ намотки и конструкция влияют на конечные размеры изделия.
Отдельно стоит рассказать о том, как устроена катушка с переменной индуктивностью, их еще называют вариометры. На практике можно встретить разные решения:
И так далее. При этом подвижная часть называется ротором, а неподвижная — статором.
По способу намотки бывают также различными, например, фильтры со встречной намоткой подавляют помехи из сети, а намотанные в одну сторону (согласованная намотка) подавляют дифференциальные помехи.
Для чего нужны и какие бывают
В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.
Дроссели. Обычно так называются устройства для ограничения тока, область применения:
Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.
Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.
Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.
Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.
Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.
Рассмотрим, где используются соленоиды.
Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.
В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.
Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.
Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).
Основные параметры
К основным характеристикам катушки индуктивности можно отнести:
Маркировка
Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.
Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.
На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна. Напоследок рекомендуем посмотреть полезное видео по теме статьи:
Что такое катушка индуктивности и почему ее иногда называют дроссель
Катушка индуктивности характеризуется своими параметрами, главными из которых являются ее индуктивность, сопротивление обмоток и рабочий ток, с которым она может функционировать. При составлении схемы особую важность играют ее габариты, вес. К катушкам предъявляются особые требования, которые могут различными в зависимости от сферы ее применения. Для использования в преобразователях, фильтрах, катушки используются более мощные, чем это заложено схемой. Главное выбрать такую модель, которая не будет влиять на производительность всей схемы или цепи.
В статье будет рассказано о том, что это такое, где используется такая катушка безопасности и из чего состоит. Также в статье содержится видеоролик и дополнительный материал, который поможет лучше разобраться в выбранной теме.
Обзор пассивных компонентов
Пассивные компоненты по сути соответствует пассивному элементу схемы. Пассивные компоненты характеризуются малыми размерами, малым числом выводов (как правило, два-три), низкой стоимостью и, как правило, достаточно высокой стойкостью к воздействиям при сборке узлов. Пассивные элементы могут выступать как дискретные компоненты и как элементы интегральных микросхем. В РЭА интегральные микросхемы имеют очень большой удельный вес, но пассивные компоненты являются все же самыми распространенными изделиями электронной промышленности. Это можно объяснить тем, что некоторые элементы трудно выполнить в микросхемном исполнении. Практически невозможно в ИМС изготовить конденсаторы большой емкости, резисторы с большим сопротивлением, сложности в разработке интегральных катушек индуктивности и трансформаторов. Кроме того технические характеристики дискретных элементов лучше, чем интегральных.