Для чего служит сальниковое уплотнение
Для чего служит сальниковое уплотнение
Перечисленные набивки могут применяться при давлениях 0,6-4 Мпа в зависимости от температуры и используемого пропитывающего состава. Пропитка служит для улучшения герметизации и снижения коэффициента трения набивки о вал. Для пропитки набивок применяют сало, парафин, битум, графит, жидкое стекло, тавот, вискозин и т.п.
Из указанных выше набивок следует отметить фторопласт. Он имеет малый коэффициент трения, поэтому срок его службы в несколько десятков раз больше, чем у остальных материалов. Этому способствует также его высокая химическая стойкость. Недостатки фторопласта – сравнительно высокая твердость (что требует больших усилий при затяжке сальника) и высокая стоимость. Эти недостатки устраняются в набивке из асбестового шнура, пропитанного фторопластовой суспензией.
Для нормальной работы сальника необходимо, чтобы усилие прижатия нижних слоев к валу равнялось давлению среды. Усилие прижатия набивки к валу действует в радиальном направлении, тогда как поджим набивки нажимной втулкой производится в осевом направлении. Схема работы сальника изображена на рисунке 29. Если бы набивной служила идеальная жидкость, то осевое и радиальное усилие были бы равны (Р х = Р у ) во всех её участках. Однако, поскольку набивка является деформируемым твердым телом, то Р х Р у и, кроме того, сила прижатия набивки к валу будет изменяться по высоте сальниковой камеры вследствие трения набивки о вал и корпус при её деформации, т.е. при сжатии.
Связь осевого и радиального усилий можно выразить зависимостью:
, (1.39)
Величина m зависит от материала набивки, давления и лругих факторов и изменяется в пределах от 1,5 до 5.
Закон изменения осевой силы по высоте сальника можно представить следующим образом:
, (1.40)
Где S=(D-d)/2 ; f= m ТР /m ; m ТР – коэффициент трения набивки о вал и корпус сальника.
При совместном решении уравнений (1.39) и (1.40) получим закон изменения радиальной силы по высоте набивки, т.е. силы прижатия набивки к валу:
, (1.41)
Эпюра изменения силы прижатия набивки к валу изображена на рисунке 29. При удалении от нажимной втулки эта сила уменьшается. При большой высоте сальниковой набивки уменьшение радиальной силы будет значительным. Эффективное перераспределение радиальной силы может быть достигнуто в конструкции двойного сальника, однако, двойной сальник применения не находит, так как его эксплуатация очень сложна.
Если бы набивка являлась абсолютно твердым телом, то в противоположность допущению об идеальной жидкости, прижатие набивки к валу должно полностью отсутствовать. Для деформируемого твердого тела усилие прижатия набивки к валу будет составлять некоторую часть от осевого усилия. Увеличение силы прижатия можно достигнуть конструктивным приемом – изготовление колец уплотнительной набивки с конусными поверхностями. Для реальных набивок этот прием широко используется.
Определим мощность, теряемую на трение в сальнике. Для элемента набивки высотой dy сила трения равна:
, (1.42)
После подстановки значения Р х из уравнения (1.41) и интегрирования в пределах от 0 до h получаем:
, (1.43)
С учетом f= m тр /m имеем:
, (1.44)
Мощность теряемая на трение, будет равна:
, (1.45)
, (1.46)
Коэффициент трения f при вращении вала имеет меньшее значение, чем при неподвижном вале, кроме того, он изменяется при изменении давления. Учесть все это для разнообразных набивок при использовании уравнения (1.45) сложно, поэтому переходят к эмпирической зависимости (1.46), которая для практических расчетов принимает вид:
, (1.47)
Сколько видов уплотнений в центробежном насосе должно быть
При установке оборудования для перекачки воды, следует разобраться, сколько видов уплотнений в центробежном насосе, в чём их отличие и принцип действия. Эти знания необходимы для дальнейшего обслуживания агрегата в процессе эксплуатации.
Уплотнения в центробежном насосе обеспечивают необходимую герметичность агрегата и препятствуют утечке жидкости. Правильно подобранные уплотнительные элементы увеличивают сок эксплуатации насосного оборудования. Чтобы определить, какие герметизирующие устройства установить на помпу, необходимо знать, сколько видов уплотнений в центробежном насосе присутствуют, их предназначение и принцип работы.
Сколько видов уплотнений в центробежном насосе
Принцип действия уплотнений центробежных насосов
Конструктивная особенность центробежных насосов – лопастное устройство рабочего узла. Вал насоса с установленной на нём крыльчаткой передаёт механическую энергию на рабочее колесо через муфту.
При этом сам вал выступает из корпуса насоса через технологическое отверстие. Чтобы перекачиваемая жидкость не утекала через это отверстие, используют различные уплотнительные элементы. Действуют они по принципу, который основан на создании гидравлического сопротивления в местах возможных утечек жидкости.
Классификация уплотнений центробежных насосов
Уплотнительные устройства для центробежных насосов можно квалифицировать по нескольким признакам. Основные типы используемых уплотнений для валов насосов подразделяются на:
Каждый из типов имеет свои особенности конструкции и способ применения.
Для чего нужны в насосах сальниковые уплотнения
Один из первых способов герметизации отверстий разного предназначения не только в насосном и помповом оборудовании – использование сальниковой набивки. Несложное приспособление для обеспечения влагонепроницаемости чего-либо было в ходу до открытия резины и используется по настоящее время. По сути, сальниковая набивка – это плетенная бичевка, пропитанный вязким составом. Процесс установки сальниковой набивки достаточно прост:
Если первые сальниковые набивки изготавливали из веревок, пропитанных жиром, то сегодня производители предлагают сальниковые уплотнители квадратного сечения из различных материалов для каждой рабочей жидкости:
Современное сальниковое уплотнение вала насоса эффективно выполняет свою функцию.
Манжетное уплотнение для центробежных насосов
Принцип действия у манжетных уплотнений схож с сальниковыми набивками. По конструкции – это эластичная манжета, изготовленная из резины различных марок. Типоразмеры манжетных уплотнений регламентируются ГОСТом 8752-79. Изготавливаются манжеты с защитой от пыли или без неё, кромкой, полученной с помощью формовки литьём или механической обработкой.
Устанавливаются манжетные герметизирующие элементы на вал насоса. При этом уплотнитель прижимается к корпусу пружинным кольцом. Герметичность достигается за счёт давления жидкой рабочей среды, которое воздействует на манжетный элемент изнутри агрегата.
Сальниковая набивка: типы, как её выбрать и заменить сальники
Сальниковая набивка – это самый популярный тип уплотнений не только центробежных насосов и арматуры, но и многого другого оборудования.
Уплотнение этого типа представляет собой шнур круглого или квадратного сечения, пропитанный каким либо материалом, например асбестом или графитом. Сальники центробежных насосов необходимы для того, чтобы исключить, а скорее уменьшить протечки жидкости из рабочей камеры оборудования.
Сальниковые уплотнения, в отличии от торцовых, не являются герметичными. Для поддержания их в рабочем состоянии необходимо обеспечить минимальную протечку для смачивания.
Содержание статьи
Типы набивок
На сегодняшний в день в свободной продаже представлено огромное количество разнообразных сальниковых набивок, которые различаются друг от друга:
по плетению – сквозные и комбинированные
по структуре – армированные и неармированные
по составу – асбестовые (и безасбестовые), графитовые и фторопластовые.
Асбестовые сальниковые набивки
Уплотнения этого типа применяются в оборудовании, которое работает с агрессивными средами, а так же при повышенных температурах и давлении. Материал выдерживает температуру до 250°С и давление до 2,5 МПа (25 атм).
Рабочая среда: нейтральная, агрессивная, нефтепродукты, газообразная и пар. Используется в центробежных насоса и арматуре.
Безасбестовые сальниковые набивки
Уплотнения этого типа применяют для арматуры и насосов, работающих под давлением не выше 20 Мпа (200 Атм) и температурой до 100°С. Рабочая среда: газ, пар, минеральные масла, нефтяное топливо, промышленная вода.
Марка:
ХБП-31 – хлопчатобумажная с масляной и графитовой пропиткой
Фторопластовые
Набивки этого типа не только эластичные, но и стойкие к агрессивным средам. Ограничения использования таких набивок состоит в том, что их запрещается использовать в средах с содержанием хлора.
Область применения: фармацевтическая, нефтяная и химическая промышленности.
Графитовые
Графитовые сальниковые набивки характеризуются высокой упругостью и хорошей пластичностью при обжатии. Они имеют низкий коэффициент трения и высокую теплопроводность, что практически исключает коррозионный и механический износ рабочей поверхности валов насосного оборудования и штоков арматуры.
Ограничения таких уплотнения состоит в том, что их не рекомендуется использовать в средах с высокой концентрацией азотных, хлористых и хромсодержащих соединений.
Графитовые набивки способны работать при температуре до 650°С в различных рабочих средах среди которых: тяжелые и легкие горячие нефтепродукты и продукты нефтегазовой переработки, вода, углеводороды, смазочное и термальное масло, органические растворители, криогенные жидкости и другие.
Подбор необходимой сальниковой набивки
Переходя к подбору необходимой Вам сальниковой набивки необходимо определиться с назначением и областью использования оборудования.
Материал, из которого будет выполнена набивка сальников, должен обеспечить необходимую герметичность, не приводить к появлению коррозии на корпусе оборудования, а также прослужить как можно дольше.
Уплотнение должно подходить к среде в которой его планируется использовать. Например если насос перекачивает агрессивные среды (щелочи и кислоты), то основа сальника должна быть кислото- и щелочестойкой. Аналогичное требование распространяется на углеводы (бензин, жиры, масла).
Неправильно подобранная набивка сальника может привести к разгерметизации, аварии, потере реагентов и так далее.
С другой стороны обратите внимание на температуру и давление, на которые рассчитан материал уплотнения. Например, процесс транспортирования нефти осуществляется при высоких температурах. Разгерметизация в этом случае может привести к ухудшению состава нефти, воспламенению, выделению паров наружу и даже взрыву.
Набивка сальников насосов должна быть устойчива к вибрации, а ещё должна обладать высоким запасом прочности к истиранию. С этой целью их дополняют различными компонентами, например, фторопластом.
Замена сальниковой набивки
Инструкция по замене сальников центробежного насоса состоит из 3 этапов.
1. Удаление отработавшей сальниковой набивки
Первый шаг состоит в извлечении отработавшей свой срок сальниковой набивки.
Затем необходимо очистить посадочное место от загрязнений и проверить вал и нажимную гайку на наличие повреждений, сколов, деформации и коррозии.
При неудовлетворительных результатах проверки изношенные детали так же необходимо заменить.
2. Подготовка новой сальниковой набивки
На этом этапе необходимо подобрать типа набивки исходя из условий эксплуатации оборудования (советы по подбору в разделе “Подбор необходимой сальниковой набивки” этой статьи).
Сечение будущей набивки (S) определяется по следующей формуле:
Подобрав материал и сечение и закупив набивку её необходимо нарезать на кольца. Для определения длины кольца используют формулу
Внимание! Запрещено расплющивать сальниковую набивку для придания ей требуемого размера.
Нарезанные заготовки рекомендуется намотать на заготовку, диаметр которой равен диаметру вала оборудования. Края заготовок рекомендуется подрезать под углом 450 и скрепить.
3. Замена сальников на центробежных насосах
Кольца новой сальниковой набивки устанавливаются по очереди таким образом, чтобы разрезы были смещены на угол в 90°.
Установленные кольца прижимаются нажимной гайкой или грундбуксой. Перекосы при обжатии недопустимы.
Проверка установки сальниковой набивки
После установки сальниковой набивки необходимо включить насос в работу и проверить наличие течей. При нагреве и намокании во время работы оборудования набивка увеличивается в размере.
Если течи нет, то нажимную гайку немного ослабляют. Гайку регулируют до тех пор, пока не установится протечка не более 3-4 капель в минуту.
Внимание! Чтобы снизить износ новой набивки от трения, нажимную гайку (сальник) изначально сильно не затягивают. Если гайка будет затянута очень сильно, то это может привести к перегреву, затвердеванию набивки и потери эластичности в месте её соприкосновения с валом. Проблема в этом случае заключается в том, что затвердевшая набивка может привести к повреждению вала насоса.
Видео: замена сальников на центробежных насосах
В этом разделе мы подготовили для Вас фрагмент учебного фильма по замене сальниковой набивки насоса.
Дальнейшая эксплуатация набивок зависит от правильно подобранной марки, её структуры и состава. В качестве материалов выступают как натуральные, так и искусственные компоненты, которые в большинстве марок дополнительно пропитывают различными составами.
Выбор пропитки зависит от назначения и условий применения, таких как рабочая температура, давление и нагрузки.
Справочник
Сальниковое уплотнение – один из видов уплотнений различных устройств и механизмов. В силу своей простоты в конструкции и стоимости, одно из самых известных и распространённых уплотнительных устройств.
Название сальниковая набивка, сальник, пошли с давних времён, когда для уплотнения различных узлов в механизмах использовалась пропитанная жиром веревка, чаще пенька.
Одним из самых распространенных видов мягких уплотнений, применяемых в современном оборудовании, является плетеная набивка. Сальниковая набивка выплетается из ниток в виде шнура прямоугольного или квадратного сечения.
Назначение сальника состоит в том, чтобы не допустить или возможно уменьшить пропуск рабочей среды наружу. Сальниковые набивки (или сальниковые уплотнения) уплотняют подвижные соединения различных механизмов, а так же применяются в различных областях для герметизации: неподвижных и подвижных сцеплений трубопроводов; автоклавов; насосов; компрессоров; арматуры; мешалок и других агрегатов. |
К примеру, как можно видеть на фотографии, сальниковую набивку на валу насоса. Сальниковые набивки также используются в запорной арматуре трубопровода, уплотняя подвижные детали арматуры относительно среды, в которой работает трубопровод. Все это создает необходимую гермитичность запорной арматуре. Также, сальниковые набивки используются в кабельных и трубных проходках. |
Эксплуатационные характеристики напрямую зависят от структуры уплотнителя и состава, который применялся на производстве. Сальниковые набивки (уплотнения) изготавливают из натуральных и исскуственных материалов, а так же пропитываются различными составами, в зависимости от области её дальнейшего применения.и от условий применения (давление, динамические нагрузки, температурный режим) Так может делатся из графитовых нитей ТРГ, улучшенных армирующими основами из всевозможных материй либо из веревок политетрафторэтилена (ПТФЭ).
Типы набивок
В зависимости от плетения бывают диагональные (сквозные и комбинированные) сальники и одно- многослойные (имеется в виду структура сердечника).
сухие и пропитанные (в качестве пропитки используются жировые, графитные и клеевые смеси);
армированные и неармированные.
Асбестовые
Данная набивка сальников применяется в агрессивных средах, так как она отлично справляется с повышенной температурой и давлением. Ее маркировки: АС, АП, АИР, АГП. Эти прокладки эксплуатируются в нефтяной, металлургической и газовой промышленности, а также в автомобилестроении.