Для чего служит сцепление трактора
Для чего служит сцепление трактора
На тракторах устанавливают фрикционные сцепления, использующие для передачи крутящего момента силы трения, возникающие между их деталями.
Главное сцепление. На тракторе бывает одно или несколько сцеплений. Сцепление, входящее в состав трансмиссии и расположенное непосредственно за дизелем, называется главным сцеплением.
Принцип действия сцепления следующий. Вал (рис. 63, а, положение /) опирается на коленчатый вал дизеля через шариковый подшипник, запрессованный в его торце. Если рядом с маховиком дизеля поставить ведомый диск, сидящий на шлицах вала, то вращение от коленчатого вала на него передаваться не будет. Если же диск (см. рис. 63, а, положение //) постепенно передвигать влево и прижимать к маховику, то между ними будут возникать силы трения, причем тем больше, чем сильнее будет прижиматься диск. Таким образом, при такой конструкции сцепления можно обеспечить очень плавное соединение двух валов за счет пробуксовывания диска и маховика во время включения.
Рекламные предложения на основе ваших интересов:
Рис. 63. Сцепление:
а — принцип действия; б — устройство; 1 — ступица; 2 —демпфер; 3— маховик; 4 — ведомый диск; 5 — ведущий диск; 6—винты; 7— рычаг; 8 — подшипник; 9 — вал; 10— вилка; 11, 14 — пружины; 12 — кожух; 13 — педаль; 15 — упор; 16 — тяга; 17 — гидроусилитель; 18—сцепление отключено; 11 — сцепление включено.
В качестве главного сцепления на тракторах применяют механизмы различной конструкции, но одинаковые по принципу действия (см. описание выше).
Устройство. Основой сцепления служит кожух (см. рис. 63, б), внутри которого помещены нажимной ведущий диск и нажимные пружины. Кожух винтами жестко укреплен на маховике двигателя. Между ведущим диском и маховиком установлен ведомый диск — тонкий стальной диск, на котором с обеих сторон укреплены накладки из асбеста с добавкой связующих материалов. Эти накладки обладают большим коэффициентом трения и выдерживают высокую температуру, возникающую при пробуксовывании диска в момент включения или выключения.
Ведомый диск своей ступицей посажен на шлицы вала. Пружины, вставленные в стаканы, упираются в кожух и ведущий диск и прижимают его через ведомый диск к маховику. Таким образом, ведомый диск 4 оказывается плотно зажатым между поверхностями маховика и ведущего диска. Возникающее при этом трение настолько велико, что при вращении маховика крутящий момент дизеля полностью передается на ведомый вал и через него направляется к ведущему валу коробки передач.
Такое сцепление называется фрикционным, однодис-ковым, сухим, постоянно замкнутого типа.
В том случае, если на тракторе установлен дизель большой мощности и приходится передавать большие крутящие моменты, один ведомый диск по своей прочности не может обеспечить такую возможность, на тракторе устанавливают сцепление с двумя ведомыми дисками. Сцепления такого типа называются фрикционными, двудисковыми, сухими, постоянно замкнутого типа.
Механизм управления сцеплением состоит из педали (см. рис. 63, б), соединенной рычагами и тягой с вилкой и через нее с передвижной муфтой с упорным шариковым подшипником, и выключающих рычагов, связанных с ведущим диском.
Чтобы выключить сцепление, нужно нажать на педаль. При этом подвижная муфта переместится влево и через подшипник нажмет на рычаги. Рычаги при этом повернутся на своих осях и отведут ведущий диск в сторону кожуха. Пружины при этом сжимаются, а ведомый диск освобождается, и передача крутящего момента прекращается.
При постепенном освобождении нажатой педали ведущий диск под действием пружин постепенно перемещается в сторону маховика (влево) и прижимает к нему ведомый диск — сцепление включено.
При пробуксовывании дисков возникает теплота, и если включать сцепление очень медленно, то детали сцепления могут излишне перегреться и выйти из строя. Поэтому при включении одинаково вредно отпускать педаль как очень быстро, так и очень медленно. Оптимальное время включения сцепления— 1.5…3 с.
Дополнительные механизмы, применяемые в сцеплениях. В сцеплениях различных тракторов применяют дополнительные механизмы, улучшающие их действие. В число их входят такие, которые уменьшают усилие, потребное для включения, гасят крутильные колебания, передаваемые коленчатым валом, ускоряют остановку ведомого диска после выключения быстро вращающегося сцепления и др.
Механизмы, уменьшающие усилия выключения сцепления. Чтобы выключить сцепление, нужно сжать большое- количество весьма упругих пружин. На это требуется большое усилие. Согласно нормам усилие на педали допускается не более 120 Н, а при ручном управлении сцеплением — не более 60 Н. Поэтому для облегчения действия педалями, управляющими сцеплением, на тракторе устанавливают механические, гидравлические или пневматические усилители.
Механический усилитель. В исходном положении (сцепление выключено) педаль удерживается пружиной, усилие которой направлено по ходу часовой стрелки относительно оси педали. При нажатии на педаль пружина поворачивается относительно неподвижного упора и сжимается, пока не дойдет до нейтральной линии. Как только ось пружины окажется ниже оси педали, пружина начнет разжиматься, создает усилие против часовой стрелки относительно оси педали и тем самым облегчает выключение сцепления.
Гидравлический усилитель устанавливают вместо тяги.
В этом случае при нажатии на педаль под действием рабочей жидкости, подаваемой к усилителю под высоким давлением, сцепление выключается силой давления жидкости.
Пневматический усилитель состоит из пневматической камеры (рис. 64), имеющей тдкое же устройство, как у тормозной камеры, приводящей в действие тормоза трактора, и следящего устройства.
При нажатии на педаль сцепления следящее устройство направляет сжатый воздух в пневматическую камеру, которая, воздействуя на подвижную муфту с выжимным подшипником, выключает сцепление.
Гаситель крутильных колебаний. Во время работы дизеля коленчатый вал его испытывает крутильные колебания. Под влиянием периодически действующих сил расширяющихся газов в цилиндре дизеля коленчатый вал то закручивается, то раскручивается в пределах упругих деформаций. Чтобы эти колебания не передавались валу коробки передач и не вызывали преждевременного износа деталей, ведомые диски соединяют со ступицей не жестко, а через резиновые демпферы или пружины (см. рис. 64).
Рис. 64. Пневматический усилитель выключения сцепления:
1 — педаль; 2 — пневматическая камера; 3— ведомые диски; 4 — пружины; 5 — шкивок; 6 — вал; 7— тормозная колодка; 8 — следящее устройство.
Во время работы двигателя эти пружины (или резиновые вставки) не дают крутильным колебаниям передаваться на валы коробки передач. Кроме того, при включении сцепления вращение от диска к ступице передается плавно и поглощаются удары, возникающие при быстром включении сцепления.
Двухдисковое сцепление: устройство
Двухдисковое сцепление – это механизм трансмиссии, который передаёт крутящий момент от мотора к коробке переключения передач и включает в себя два ведомых диска. Поскольку двухдисковым сцеплением, при его достаточно небольших размерах, передаётся крутящий момент значительной величины, этот механизм используют на тяжёлых грузовых автомобилях, тракторах и больших автобусах. Двухдисковым было и сцепление тяжёлых советских мотоциклов с коляской («Урал» и «Днепр»). Двухдисковое сцепления сложнее однодискового по конструкции и имеет бо́льшую массу.
Основные сведения. Функции сцепления
Работа сцепления основывается на воздействии силы трения скольжения (муфты фрикционной). Вместе с передачей крутящего момента, она обеспечивает плавное переключение скоростей, гашение крутильных колебаний, кратковременное отсоединение трансмиссии от маховика двигателя. Сцеплением компенсируются вибрации и нагрузки от неравномерности работы мотора, снижается их негативное влияние на различные элементы двигателя и трансмиссии.
Сцепление кратковременно разобщает коленчатый вал двигателя внутреннего сгорания с силовой передачей машины. Это нужно для плавного переключения шестерёнок в коробке передач и для торможения автомобиля, вплоть до его полной остановки. Также сцепление предоставляет возможность плавно, без рывка, тронуться с места.
Эквивалентом сцепления на тракторах и бронетехнике являются фрикционы.
Было изобретено много разнообразных типов сцепления, однако самыми массовыми стали механизмы, основанные на одном или нескольких фрикционных дисках, которые пружинами плотно сжаты друг с другом или с маховиком.
Фрикционный материал, из которого состоят накладки на диски сцепления, аналогичен используемому в тормозных колодках. Ранее для его производства использовался асбест, а в последнее годы применяется без асбестовый материал.
Муфту сцепления устанавливают между двигателем внутреннего сгорания и коробкой переключения передач, и это один из наиболее загруженных элементов трансмиссии.
Виды сцепления (классификация)
Принцип действия сцепления сухого типа основан на силе трения, которая возникает при взаимодействии сухих поверхностей: ведущего, ведомого и нажимного дисков. Эта сила создаёт жесткую связь двигателя с коробкой переключения передач.
Самым распространённым видом сцепления является сухое однодисковое. Оно используется на основной массе автомобилей с механической коробкой переключения передач. Сцепление мокрого типа создаёт работу трущихся поверхностей в масляной ванне и обеспечивает более плавное соприкосновения дисков; охлаждение за счёт циркуляции жидкости и передачу бо́льшего крутящего момента на трансмиссию. Сцепление мокрого типа применяется на современных роботизированных коробках переключения передач и является более дорогим и сложным в производстве, чем сцепление сухого типа.
В целом, классификация сцепления включает в себя следующие его типы:
Принцип действия
Плавность включения / выключения скоростей обеспечивает проскальзывание постоянно вращающегося ведущего диска (который присоединён к коленвалу ДВС), относительно диска ведомого, который соединён через шлиц с коробкой переключения передач.
Мускульное усилие, прилагаемое водителем на педаль сцепления, передаётся на механизм механически (при помощи рычажного или тросового механизма), либо посредством гидравлического привода.
Педаль соединена с вилкой сцепления, перемещающей выжимной подшипник, который, надавливая на концы лепестков диафрагменной пружины, прекращает её давление на нажимной диск, а он, в свою очередь, освобождает ведомый. В этот время двигатель отсоединяется от трансмиссии.
Включив нужную передачу КПП, водитель отпускает педаль сцепления, и вилка от этого перестаёт воздействовать на выжимной подшипник, а тот – на пружину. Нажимной диск прижимает ведомый к маховику, и двигатель оказывается снова соединённым с трансмиссией.
Когда сцепление включено, крутящий момент передаётся от коленвала на маховик, после чего – на кожух сцепления и, через пластинчатые пружины, на ведущий (нажимной) диск. От маховика и ведущего нажимного диска, при помощи силы трения, крутящий момент передаётся на зажатый ими диск ведомый, чья ступица снабжена шлицевым соединением с ведущим валом коробки переключения передач.
Если при включении сцепления резко отпустить педаль, то ведомый диск также резко, и с силой, прижмётся к ведущему (к маховику), затормозив его до такой степени, что мотор остановится (заглохнет) – т.е., сцепление сработает как тормозной механизм. Вот почему педаль сцепления после начала начала зацепления дисков необходимо отпускать плавно и постепенно. Насколько плавно и постепенно – зависит от конструкции привода сцепления.
Устройство сцепления
Основными элементами муфты сцепления, в стандартном её варианте, применяемом на большинстве автомобилей с механической КПП, являются: диски ведущий и ведомый; корзина сцепления – диск нажимной; выжимной подшипник сцепления; муфта выключения сцепления; вилка сцепления; привод сцепления.
На ведомый диск сцепления с обеих сторон нанесены фрикционные накладки (приклёпаны либо приклеены). Его функцией является передача крутящего момента за счёт силы трения. Пружинный демпфер крутильных колебаний, который встроен непосредственно в корпус диска, смягчает процесс соединения с маховиком, гася вибрационные нагрузки и неравномерности работы мотора.
Центральная часть диска сцепления – ступица – снабжена шлицевым соединением и может перемещаться по первичному валу коробки переключения передач. Ступица соединена с диском подвижным образом, через демпферные пружины и фрикционные шайбы гасителя крутильных колебаний, которые и служат для выравнивания колебаний крутящего момента. Эти колебания неизбежно возникают от переменных нагрузок и инерции массы, при передаче крутящего момента от двигателя к ведущим колёсам и обратно.
Корзина сцепления – это единый узел, в который входят нажимной диск и диафрагменная пружина, воздействующие на диск ведомый. Ведомый диск сцепления располагается между корзиной и маховиком. Он соединён с первичным валом коробки передач посредством шлицев, по которым может перемещаться. Диафрагменная пружина в корзине сцепления бывает или нажимного, либо вытяжного принципа действия. Отличие заключается в том направлении, которое прилагается усилием от привода сцепления: к маховику, или от него.
Все детали сцепления закрываются кожухом корзины сцепления. Он приворачивается к маховику болтами; оси выжимных рычагов через проушины прикрепляются к кожуху.
Из-за особенности конструкции пружины вытяжного действия, можно применять такую корзину, толщина которой значительно меньше. Что делает данный узел исключительно компактным.
В составе сухого двухдискового сцепления имеются два ведомых диска, между которыми установлена промежуточная проставка. Для выключения сцепления водитель выжимает педаль, и это усилие через систему тяг и рычагов передаётся на вилку. Рычаги и пальцы отводят назад ведущий нажимной диск. В ходе этого пружины, сжимаясь, высвобождают ведомый диск. По обеим сторонам этого диска образуются зазоры, которые прерывают передачу через него крутящего момента.
В сцеплении сухом двухдисковом для формирования необходимых зазоров между дисками ведущими и ведомыми в выключенном состоянии предусмотрены отжимные пружины и регулировочный болт промежуточного диска. Когда педаль плавно отпускается, нажимными пружинами все детали механизма выключения возвращаются в исходное положение, и ведомый диск прижимается к ведущему (нажимному) диску и к маховику.
При гидравлическом приводе сцепления величина полного хода педали остаётся в постоянном виде (это обеспечивается наличием у педали сцепления возвратной пружины). Однако изменяется величина её рабочего хода, с одновременной компенсацией уменьшения толщины ведомого диска в результате износа – чем меньше толщина остающегося диска; тем (при таком же самом полном ходе педали сцепления) большим оказывается её рабочий ход, и тем «выше» (близко к концу обратного хода педали при её отпускании) срабатывает сцепление.
Педаль сцепления с гидроприводом можно отпускать довольно резко, вплоть до того мига, когда диски ведущий с ведомым начинают входить в зацепление друг с другом (это ощущается как слабый рывок машины в тот момент, когда она начинает трогаться) – после этого идёт уже рабочий ход педали, в ходе которого её нужно отпускать обязательно плавно.
Когда ведомый диск ещё новый, сцепление срабатывает «внизу», и машина начинает трогаться даже при небольшом отпускании педали. А если ведомый диск уже заметно изношен, то диски не входят в зацепление практически до самого конца хода педали. У педали сцепления с гидроприводом всегда имеется небольшой свободный ход (около 10-15 мм на педали) имеется в самом начале её нажатия педали. Он обусловлен конструктивным зазором в 2-3 мм между шарнирно соединённым с педалью сцепления толкателем и приводимым им в движение поршнем главного цилиндра сцепления. Это нужно для обеспечения полного включения сцепления при отпускании педали и исключения его пробуксовки при движении автомобиля.
Когда педаль сцепления имеет тросовый привод, полный ход увеличивается по мере изнашивания ведомого диска, педаль слегка приподнимается относительно уровня пола, с увеличением и её рабочего хода. Свободный ход можно отрегулировать длиной троса, он обычно составляет порядка 30-40 миллиметров.
Подробнее о принципе действия двухдискового сцепления
Выжимной подшипник нажимает на выжимные рычаги,которые оттягивают нажимной диск. Он отходит от первого ведомого и отпускает отжимные пружины. Эти пружины, в свою очередь, отпускают промежуточный ведущий диск, а он отходит за счёт других отжимных пружин от второго фрикционного. На такую же величину, насколько диск нажимной отошёл от диска первого фрикционного.
При обратном передвижении отжимные пружины обеспечивают равномерное прижатие промежуточного диска ко ведомому №2, и диска нажимного – к ведомому №1. Перемещаются нажимные диски по шпилькам, которые ввёрнуты в маховик, и к ним же прикреплена корзина сцепления. На эти шпильки также надеты отжимные пружины.
В сцеплениях двухдискового типа сжатие ведущих и ведомых деталей может обеспечиваться несколькими цилиндрическими пружинами, которые равномерно расположены в 1 или 2 ряда по периферии нажимного диска. Сжатие также может производиться одной центральной конической пружиной.
Зачастую двухдисковое сцепление имеет привод с пневматическим усилителем, который нужен для снижения усилий, прилагаемых на педаль сцепления.
Возможные неисправности двухдискового сцепления
При побуксовке, когда отпущена полностью педаль сцепления, диски проскальзывают один относительно другого и в значительной степени нагреваются. Стальной ведомый диск может покоробиться, а чугунный маховик и нажимные диски – потрескаться. Фрикционные накладки на дисках при этом изнашиваются и обгорают. Проявляется пробуксовка вначале на высоких передачах: несмотря на увеличение оборотов мотора, скорость машины не растёт. Если не отремонтировать, то данный процесс начинает прогрессировать, в дальнейшем даже на первой передаче автомобиль не может тронуться с места.
Если же причина – в ведомом диске, то это сразу будет видно, в форме деформаций и механических дефектов на нём. Когда фрикционные накладки изношены очень сильно, и подрегулировать свободный ход не получается, то необходимо заменить накладки, либо весь ведомый диск.
Менее распространённые причины пробуксовки состоят в замасливании накладок, а также в ослаблении нажимных пружин (возможно, случился отпуск стали при перегреве сцепления).
Неполное выключение сцепления появляется таким образом: при включении передачи, когда машина неподвижна, слышится хруст шестерёнок. Это ведёт к износу коробки переключения передач. А наиболее вероятной причиной является увеличенный свободный ход педали сцепления.
Также это может произойти при деформации выжимных рычагов; или когда выжимной подшипник заедает – не передвигается вместе с нажимной муфтой. Есть вероятность, что ведомый диск сцепления не передвигается по шлицам (при загустении или загрязнении консистентной смазки).
Первичный вал КПП вставлен в шарикоподшипник, который расположен в углублении маховика, и «ведение» сцепления может быть связано с неисправностью этого подшипника. В двухдисковом сцеплении такая проблема обычно появляется из-за замасливания и последующего склеивания дисков ведомых и нажимных.
Когда, несмотря на плавное отпускание педали сцепления автомобиль трогается с места рывками, это говорит о повреждении фрикционных накладок; о том, что ведомый диск покороблен, либо сломались демпферные пружины, либо износились фрикционные шайбы.
Ведомый диск может заедать при передвижении по шлицам первичного вала КПП. Возможно также заедание нажимной муфты или разрушение выжимного подшипника.
Если воздух попадает в гидравлический привод выключения сцепления, возможно «проваливание» педали, и, как следствие – неполное выключение сцепления. В этом случае надо удалить пузырьки воздуха с частью тормозной жидкости (прокачать сцепление), и долить новой.
Если привод тросовый, то обрыв троса может стать причиной поломки сцепления. Когда педаль сцепления не возвращается в первоначальное положение – отсоединилась возвратная пружина.
Ресурс двухдискового сцепления
Ресурс работы двухдискового сцепления напрямую зависит от условий эксплуатации машины и от стиля езды её водителя. Срок службы сцепления составляет, в среднем, 100-150 тыс. км пробега. Двухдисковые сцепления обладают значительным ресурсом за счёт большого числа рабочей поверхности.
Сцепление: устройство, принцип работы
Сцепление представляет собой специальный механизм в составе трансмиссии автомобиля или трактора, предназначенный для передачи крутящего момента в соединении маховика двигателя с первичным трансмиссионным валом и гашения крутильных колебаний. Сцепление в нужное время разобщает двигатель и коробку передач, чтобы обеспечить плавное трогание с места и плавный переход с одной шестерни КПП на другую в ходе переключения передач. Механизм сцепления имеется в любой двигающейся технике, только на гусеничных тракторах и бронетехнике используется аналогичный термин «фрикцион».
Для простого описания необходимости использования сцепления можно сопоставить работу двигателя с понятием «движение транспорта». Если бы маховик мотора был непосредственно соединён с ведущим мостом транспортного средства, то при запуске двигателя автомобиль или трактор должен сразу же ехать. Так же, и для остановки машины необходимо будет заглушить мотор. И все эти действия будут проходить сразу, резко. А сцепление позволяет варьировать процесс получения энергии движения от двигателя, избавляя транспортное средство от резких рывков.
Механизмы сцепления в «молодые годы» мирового машиностроения
Изобретение механизма сцепления приписывается Карлу Бенцу. Так это или не так, достоверно установить невозможно: производством и совершенствованием первых автомобилей в XIX веке одновременно занималось сразу несколько компаний, и все они шли по своему развитию, что называется, «ноздря в ноздрю».
Старейшим видом сцепления, широко распространённого на большинстве автомобилей конца XIX – начала XX века, было сцепление конического типа. Его фрикционные поверхности имели коническую форму. Такое сцепление передавало бо́льший крутящий момент, при тех же габаритах, по сравнению с нынешним однодисковым, было предельно простым по своему устройству и в уходе за ним.
Комфортабельный «Мерседес Бенц НР-50» – автомобиль с конической фрикционной муфтой.
Однако тяжёлый конический диск такого типа сцепления обладал большой инерцией, и при переключении передач после выжима педали ещё продолжал вращаться на холостом ходу, из-за чего включение передачи было затруднённой операцией. Для торможения диска сцепления применили специальный агрегат – тормоз сцепления, однако его использование было лишь половиной решения проблемы, как и замена одного конуса двумя менее массивными. В итоге, уже в 1920-х годах от такой тяжёлой и громоздкой (к кому же требующей значительных мускульных усилий в использовании) конструкции, как коническое сцепление, полностью отказались. Также существовало сцепление с обратным конусом, работавшее на разжимание.
Однако сам принцип данного механизма нашёл новое воплощение в конструкции современных коробок переключения передач с синхронизаторами. Синхронизаторы коробки передач, по сути, и представляют собою маленькие конические сцепления, которые работают за счёт трения бронзы (или другого металла с высоким коэффициентом трения) по стали.
Устройство сцепления
Было изобретено несколько видов механизма сцепления. Однако стали основными и получили самое широкое распространение механизмы, основанные на использовании одного или нескольких фрикционных дисков, которые плотно сжаты пружинами друг с другом, или с маховиком. Фрикционный материал этих дисков схож с тем, что используется на тормозных колодках.
Ведомый диск сцепления оборудован пружинными пластинами, к которым прикреплены две фрикционные накладки. Центральная часть ведомого диска – ступица – снабжена шлицевым соединением и может перемещаться по первичному валу коробки переключения передач. С основной частью диска ступица соединена подвижным образом, посредством демпферных пружин и фрикционных шайб гасителя крутильных колебаний.
Все составные части механизма сцепления расположены в картере, который при помощи болтов крепится к силовому агрегату. Все детали сцепления являются закрытыми кожухом (корзина сцепления), приворачиваемым к маховику болтами; оси выжимных рычагов через проушины крепятся к кожуху.
Принцип функционирования механизма сцепления
В своём обычном рабочем положении нажимной и ведомый диски являются плотно прижатыми друг к другу с помощью мощных пружин, посредством рычагов и выжимного подшипника. Под воздействием силы трения между данными дисками, на первичный вал коробки переключения передач от маховика мотора постоянно передаётся крутящий момент. Если отвести нажимной диск от ведомого, то произойдёт прерывание крутящего момента от мотора и прекращение вращения ведомого диска с валом.
Рассоединение дисков производится при помощи вилки сцепления, которая своим строением напоминает обычные качели. Данная вилка приводится в действие посредством цепочки рычагов и тяг педалью сцепления в кабине автомобиля или трактора.
Выжимание педали сцепления производит разведение дисков сцепления, в результате чего между ними остаётся свободное пространство. Наоборот, отпускание педали и выключение сцепления приводит к плотному сжатию ведущего и ведомого дисков механизма. Усилие от нажатия на педаль сцепления передаётся на устройство механически (посредством рычажного или тросового механизма), либо гидравлическим приводом.
Ведомый диск в постоянном режиме зафиксирован вместе с маховиком с помощью диска нажимного. Для того, чтобы транспортное средство тронулось, ведомый диск должен соприкоснуться с вращающимся маховиком. Водитель нажимает на педаль сцепления, и это позволяет ему включить первую передачу. Когда педаль он отпускает, пружины нажимного диска снова соединяют ведомый диск с маховиком. Скорости вращения диска и маховика постепенно выравнивается, благодаря чему и достигается плавное и правильное движение транспортного средства.
В полной мере крутящий момент начинает передаваться тогда, когда достигается полное выравнивание скоростей вращения ведомого диска, диска сцепления и маховика. Если при трогании с места перестать выжимать педаль сцепления слишком резко, «бросить» её, то машина ли трактор может заглохнуть. При «бросании» педали ведомый диск с силой прижимается к диску ведущему (к маховику) и затормаживает его до такой степени, что мотор может остановиться (заглохнуть). То есть, в этом случае сцепление работает подобно тормозному механизму. Поэтому педаль сцепления после момента начала зацепления дисков нужно отпускать плавно.
При переключении любой другой передачи, кроме первой, нужно также добиваться неизменно плавного хода педали. Это позволит продлить срок эксплуатации механизма сцепления и всей трансмиссии в целом.
Виды механизмов сцепления
Механизмы сцепления можно классифицировать:
Механический вариант является наиболее простым по конструкции и принципу действия. В случае его использования, водитель или механизатор, нажимая на педаль, посредством тяг и тросов передаёт усилие непосредственно на вилку сцепления. В гидравлическом варианте сцепления задействуется также поршень с гидравлической жидкостью. Как правило, данный вариант применяется на большегрузном автотранспорте, чтобы облегчить работу водителя.
При использовании гидравлического привода сцепления величина полного хода педали остаётся постоянной (это обеспечивается наличием у педали сцепления возвратной пружины). Однако величина её рабочего хода меняется, компенсируя уменьшение толщины ведомого диска в результате износа: чем меньше становится толщина диска, тем, при том же полном ходе педали сцепления, бо́льшим оказывается её рабочий ход, и тем «выше» (ближе к концу обратного хода педали при её отпускании) срабатывает сцепление.
У педали сцепления с механическим тросовым приводом полный ход прибавляется по мере износа ведомого диска (педаль сцепления приподнимается вверх относительно уровня пола), вместе с этим увеличивается и её рабочий ход. Свободный ход педали устанавливается регулировкой длины троса. Он составляет в нормальном положении порядка 30…40 мм.
По своей конструкции, сцепление бывает электромагнитного, фрикционного или гидравлического типа.
Фрикционный вариант сцепления обеспечивает передачу вращающего момента при помощи силы трения. Сцепление электромагнитного вида контролируется посредством магнитного поля. В гидравлическом варианте сцепления связь обеспечивается под воздействием потока гидравлической жидкости.
Сцепление является электромагнитным, если сжатие ведущих и ведомых элементов механизма производится посредством электромагнитных сил. Электромагнитное сцепление постоянно находится в разомкнутом состоянии.
Этот редкий вид сцепления устанавливался на некоторых модификациях машин с ручным управлением. Между ведущим и ведомым дисками находился ферромагнитный порошок, не мешающий раздельному вращению валов. Но после подачи электрического тока в обмотку электромагнита порошок «затвердевал» и передавал крутящий момент.
Для высоких нагрузок, таких как грузовые и спортивные автомобили, применяется также керамическое сцепление с высоким коэффициентом трения, однако оно «схватывает» резко, поэтому непригодно для использования в стандартных автомобилях.
Наиболее распространённый тип – фрикционный. В зависимости от количества используемых дисков, оно может быть однодисковым, двухдисковым или многодисковым.
Сухой и мокрый типы сцепления
Кроме того, сцепление может быть мокрым либо сухим. В сухом типе сцепления производится работа дисков в условиях сухого трения. Мокрое сцепление предусматривает эксплуатацию дисков в жидкости. Самым распространённым в современных транспортных средствах является сухое однодисковое сцепление.
Мокрый тип сцепления (работающее в масляной ванне) в наше время применяется, главным образом, на мотоциклах с поперечным расположением двигателя. Поскольку мотоциклетные силовые агрегаты имеют общий масляный картер и для мотора, и для коробки переключения передач. Детали сцепления в них являются совмещёнными с моторной передачей и системой запуска двигателя, и смазываются они общим моторным маслом. На автомобилях же сцепления в масляной ванне практически вышли из употребления.
Двух- и многодисковые сцепления
Двухдисковым или многодисковым сцеплением оснащаются транспортные средства с очень мощными моторами. При тех же размерах такие варианты сцепления осуществляют передачу существенно бо́льшего крутящего момента, обеспечивают значительно бо́льший ресурс всей конструкции. Между ведомыми дисками располагается проставка. В результате получается больше поверхностей трения. Двухдисковые механизмы устанавливаются для повышения срока службы сцепления, в связи с большой мощностью двигателей и необходимостью передавать увеличенные крутящие моменты.
Трёхдисковое сцепление для Nissan Skyline GT.
Принцип работы таков. Выжимной подшипник нажимает на выжимные рычаги, и они оттягивают нажимной диск. Нажимной диск отходит от первого ведомого и отпускает отжимные пружины. Они отпускают промежуточный ведущий диск, а он отходит за счёт других отжимных пружин от второго фрикционного, настолько же, насколько нажимной отошёл от первого фрикционного. При обратном движении отжимные пружины способствуют равномерному прижатию промежуточного диска ко второму ведомому и нажимного — к первому ведомому.
Нажимные диски перемещаются по шпилькам, которые ввёрнуты в маховик, и к ним же прикреплена корзина сцепления. На шпильки надеты отжимные пружины.
Сцепление с пневматическим усилителем
На тяжёлых грузовых автомобилях большой грузоподъёмности, к примеру, на МАЗах, устанавливается привод сцепления с пневматическим усилителем. Пневмоусиление предназначено для уменьшения мускульного усилия, прилагаемого на педаль сцепления.
Устройство таково: педаль, тяга, золотник (он же клапан управления), шланги, пневматическая камера, рычаги, тормозок, первичный вал с барабаном тормозка. Принцип действия: при отпущенной педали впускной клапан золотника закрыт, а выпускной открыт. При нажатии на педаль усилие через тягу и золотник передаётся на вилку выключения сцепления. В это же время в золотнике открывается впускной клапан и закрывается выпускной – корпус золотника надвигается на выпускной клапан, выпускной клапан прижимается к впускному и закрывается, а впускной этим движением открывается. Воздух через впускной клапан поступает в пневматическую камеру, которая за счёт давления воздуха помогает нажимать вилку выключения сцепления.
Распространённые неисправности сцепления и их признаки
Итак, механизм сцепления играет огромную роль в функционировании любого автомобиля или трактора. От его исправности и работоспособности во многом зависит техническое состояние всего транспортного средства. Поэтому, для обеспечения долгой и надёжной работы всех элементов механизма сцепления важно пользоваться им плавно, и без необходимости не практиковать излишне долгих нажатий на педаль. При таких щадящих условиях работы сцепление прослужит долго.