Для чего служит связь включения

Аппараты включения, защиты и управления.

1.1Для нормальной эксплуатации электрооборудования необходимо иметь

специальные аппараты и устройства, с помощью которых производится

пуск и контроль за работой электрооборудования, а также защита от перегрузок

и аварийных режимов работы. Управление электрооборудованием

может быть ручным — при помощи рубильников, выключателей, полуавтоматическим

— при помощи пусковой кнопки, и автоматическим —

при помощи автоматического аппарата без участия человека.

Аппараты включения (рис. 1-3). К ним относятся рубильники, кнопочные

пускатели, пакетные выключатели, штепсельные разъемы, микропереключатели

и кулачковые переключатели.

Рубильники.Рубильники применяются в основном в качестве разъединителей

для размыкания и замыкания электрической цепи вручную и

лишь изредка для включения и отключения различного технологического

оборудования. Они устанавливаются главным образом на распределительных

электрических щитах и как исключение на стене с обязательным защитным

кожухом. Применяются рубильники с боковым и центральнымприводами на токи 60,

100, 200 А и более с напряжением

Кнопочные пускатели.

Кнопочный пускатель представляет собой трехполюсной выключатель,.замыкание контактов производится путем нажатия на кнопку «Пуск». Размыкание контактов происходит при нажатии на кнопку «Стоп». Они выпускаются в защищенном исполнении и рассчитаны на ток до 12,5 А и потребляемую мощность не более 2,5 кВт.

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения

Рис. 1-3. Аппараты включения.

Пакетные выключатели.

Они значительно компактнее рубильников и монтируются с выводом на панель только рукоятки, что обеспечивает безопасность работы обслуживающего персонала.

Пакетные выключатели в основном применяются для включения и выключения электродвигателей и выпускаются они на токи 10 и 25 А при напряжении 220 В, в одно-, двух-, и трех- полюсном исполнениях. Эти пакетные выключатели могут применяться и при напряжении 380В, но допустимая величина тока для них снижается соответственно до 6

и 15 А. При номинальных величинах тока и напряжении и коэффициенте мощности 0,8 пакетные выключатели выдерживают 20000 переключений. частота переключений не должна превышать 300 раз в час. поворачивая рукоятку пакетного выключателя на 90ー, можно включать и отключать оборудование. Из четырех положений рукоятки пакетного

выключателя два соответствуют включенному и два выключенному состоянию машин. Кроме пакетных выключателей, широко применяются и пакетные переключатели. В пакетном переключателе только одно положение соответствует отключенному состоянию, оборудования, а тир остальных —включенному различными способами. Штепсельные разъемы.Для подключения к сети переносных и передвижных электрических машин и электротепловых аппаратов применяются штепсельные разъемы, которые изготовляются различного типа,вида и размера. Размеры и толщина контактных штырей, зависит от мощности и напряжения тока. Штепсельные разъемы, состоящие из розетки и вилки,

применяются в цепях однофазного тока. Трехконтактные разъемы используются

для однофазного тока, но при этом 3-й контакт связан с заземляющим

приводом. токонесущие контакты в штепсельном разъеме находятся в глубине пластмассового корпуса, что предохраняет от поражения электрическим током.

Микровыключатель.Микровыключатель предназначен для включения и отключения электродвигателя под воздействием усилия этой машины или ее деталей. Они имеют небольшие размеры, просты и надежны в эксплуатациии поэтому широко применяются в различных машинах. Кулачковый переключатель.Кулачковые переключатели состоят из

корпуса, шпинделя и рукоятки. Внутри переключателя расположены

подвижные и неподвижные контакты. С правой и левой стороны корпуса

расположены клеммы, к которым подсоединяются провода электросети и машины.

При повороте рукоятки на 90ー подвижные контакты соединяются с неподвижными контактами, образуя различные варианты замыкания контактов.

Аппараты защиты

Чрезмерные токи перегрузки и короткого замыкания в основном возникают в цепи, когда сопротивление ее оказывается намного меньше номинального сопротивления. Причинами этого могут быть повреждение электроизоляции, перегрузка двигателя. Под действием этих больших токов за короткое время может выделиться такое количество тепла, которое перегреет провода и электрооборудование выше критической для изоляции температуры. Если не обеспечить своевременное отключение электрической цепи, то произойдет воспламенение изоляции проводов и электрооборудования. Для защиты электрооборудования от перегрузок применяются плавкие предохранители, автоматические выключатели, тепловые реле защиты. Плавкие предохранители по своей конструкции подразделяются на резьбовые и трубчатые. Главной частью плавких предохранителей является плавкая вставка — металлическая проволока, или пластина

меньшего сечения, чем сечение проводов. При токах короткого замыкания в пять и более раз превышающий номинальный ток в цепи, плавкая вставка мгновенно расплавляется. При этом электрическая цепь разрывается и прохождение тока к токопотребителям прекращается.

Автоматический выключатель. Автоматический выключатель служит для защиты электроцепи от токов короткого замыкания и токов перегрузки. Он представляет собой пластмассовый корпус, внутри которого установлены подвижные и неподвижные контакты, а также три электромагнитных и три тепловых расцепителя. На крышке корпуса имеется две кнопки, одна черная — «Включено», красная — «Отключено». При коротком замыкании в цепи срабатывают электромагнитные расцепители. При длительных перегрузках в цепи срабатывают тепловые расцепители. Принцип действия тепловых реле защиты тот же, что и у автоматических выключателей с тепловыми расцепителями.

Источник

Принцип работы и назначение ВЧ-каналов связи высоковольтных линий электропередач

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включенияКанал связи — совокупность устройств и физических сред, передающих сигналы. С помощью каналов сигналы передаются из одного места в другое, а также переносятся во времени (при хранении информации).

Наиболее распространенные устройства, входящие в состав канал: усилители, антенные системы, коммутаторы и фильтры. В качестве физической среды часто используются пара проводов, коаксиальный кабель, волновод, среда, в которой распространяются электромагнитные волны.

Коаксиальный кабель — высокочастотный кабель у которого один из проводов представляет собой полую трубу, полностью охватывающую второй провод. Внутренний провод располагается точно по оси трубы, почему кабель и называется коаксиальным или концентрическим. Чтобы удержать внутренний провод в таком положении, либо пространство между внешним и внутренним проводом сплошь заполняются изоляционным материалом, либо на внутренний провод одеваются отдельные изоляторы.

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения

Поскольку в коаксиальном кабеле все электрические и магнитные поля сосредоточены в пространстве между внешним и внутренним проводом, т. е. внешних полей нет, то потери на излучение ничтожны. Для уменьшения потерь на нагревание металла внутренний провод может быть сделан большого диаметра (поверхность внешнего провода во всяком случае достаточно велика).

Если коаксиальный кабель должен быть гибким, то его внешний провод делается в виде гибкой металлической оплетки и кабель заполняется пластичным изоляционным материалом.

С точки зрения техники связи наиболее важными характеристиками каналов связи являются искажения, которым подвергаются передаваемые по нему сигналы. Различают искажения линейные и нелинейные. Линейные искажения состоят из частотных и фазовых искажений и описываются переходной характеристикой или, что эквивалентно, комплексным коэффициентом передачи канала. Нелинейные искажения даются нелинейными зависимостями, указывающими, как изменяется сигнал при прохождении по каналу связи.

Канал связи характеризуется совокупностью сигналов, которые посылаются на передающем конце, и сигналами, которые принимаются на приемном конце. В случае, когда сигналы на входе и выходе канала являются функциями, определенными на дискретном множестве значений аргумента, канал называется дискретным. Такими каналами связи пользуются, например, при импульсных режимах работы передатчиков, в телеграфии, телеметрии, радиолокации.

Непрерывным называется канал, сигналы на выходе и входе которого представляют собой непрерывные функции. Такие каналы широко используются в телефонии, радиовещании, телевидении. Дискретные и непрерывные каналы связи широко применяются также в автоматике и телемеханике.

Несколько различных каналов могут использовать одну и ту же техническую линию связи. В этих случаях (например, в многоканальных линиях связи с частотным или временным разделением сигналов) каналы объединяются и разъединяются с помощью специальных коммутаторов или фильтров. Иногда, наоборот, один канал использует нескольких технических линий связи.

Диапазон частоты ВЧ-каналов связи – от десятков до сотен кГц. Высокочастотная связь организуется между двумя смежными подстанциями, которые соединены линией электропередач напряжением 35кВ и выше. Для того чтобы переменный ток частотой 50 Гц попадал на шины распределительного устройства подстанции, а сигналы связи на соответствующие комплекты связи, используют высокочастотные заградители и конденсаторы связи.

Для приема и обработки сигналов ВЧ-связи на обеих подстанциях, между которыми организована ВЧ-связь, устанавливают специальные фильтры, приемопередатчики сигналов и комплекты оборудования, которые осуществляют определенные функции. Ниже рассмотрим, какие именно функции могут реализовываться с применением ВЧ-связи.

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения

Наиболее важная функция – использование ВЧ-канала в устройствах релейной защиты и автоматики оборудования подстанции. ВЧ-канал связи используется в защитах линий 110 и 220кВ – диференциально-фазной защиты и направленно-высокочастотной защиты. По обоим концам ЛЭП устанавливают комплекты защит, которые имеют связь между собой по ВЧ-каналу связи. Благодаря надежности, быстродействию и селективности, защиты с использованием ВЧ-канала связи используются в качестве основных для каждой ВЛ 110-220кВ.

дистанционная с ВЧ блокировкой,

В первых двух типах защит по ВЧ каналу при внешнем коротком замыкании передается сплошной сигнал ВЧ блокировки, в дифференциально-фазовой защите по каналу релейной защиты передаются импульсы напряжения ВЧ. Длительность импульсов и пауз примерно одинакова и равна половине периода промышленной частоты. При внешнем коротком замыкании передатчики, расположенные по обоим концам линии, работают в разные полупериоды промышленной частоты. Каждый из приемников принимает сигналы обоих передатчиков. Вследствие этого при внешнем коротком замыкании оба приемника принимают сплошной блокирующий сигнал.

При коротком замыкании на защищаемой линии происходит сдвиг фаз манипулирующих напряжений и появляются интервалы времени, когда оба передатчика остановлены. При этом в приемнике возникает прерывистый ток, используемый для создания сигнала, действующего на отключение выключателя данного конца защищаемой линии.

Обычно передатчики на обоих концах линии работают на одной частоте. Однако на линиях большой протяженности иногда выполняются каналы релейной защиты с передатчиками, работающими на разных ВЧ или па частотах с малым интервалом (1500—1700 гц). Работа на двух частотах дает возможность избавиться от вредного влияния сигналов, отраженных от противоположного конца линии. Каналы релейной защиты используют специальный (выделенный) ВЧ канал.

Существуют также устройства, которые с использованием ВЧ-канала связи, определяют место повреждения линий электропередач. Кроме того, ВЧ-канал связи может использоваться для передачи сигналов оборудования телемеханики, SCADA, САУ и других систем оборудования АСУ ТП. Таким образом, по каналу высокочастотной связи можно осуществлять контроль над режимом работы оборудования подстанций, а также передавать команды управления выключателями и различными функциями устройств РЗА.

Канал связи по линиям электропередачи — канал, используемый для передачи сигналов в диапазоне от 300 до 500 кгц. Используются различные схемы включения аппаратуры канала связи. Наряду со схемой фаза — земля (рис. 1), встречающейся наиболее часто благодаря своей экономичности, применяются схемы: фаза — фаза, фаза — две фазы, две фазы — земля, три фазы — земля, фаза — фаза разных линий. ВЧ заградитель, конденсатор связи и фильтр присоединения, используемые в этих схемах, являются оборудованием обработки ЛЭП для организации по их проводам ВЧ каналов связи.

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения

Рис. 1. Структурная схема простого канала связи по линии электропередачи между двумя смежными подстанциями: 1 — ВЧ заградитель; 2 — конденсатор связи; 3 — фильтр присоединения; 4 — ВЧ кабель; 5 — устройство ТУ — ТС; в — датчики телеизмерений; 7 —приемники телеизмерений; 8 — устройства релейной зашиты или (и) телеавтоматики; 9 — АТС; 10 — абонент АТС; 11 — прямые абоненты.

ВЧ-каналы могут использовать для связи с оперативно-выездными бригадами, которые осуществляют ремонт участков поврежденных линий электропередач, ликвидируют повреждения в электроустановках. Для этой цели используют специальные переносные приемопередатчики.

Применяется следующая ВЧ аппаратура, подключаемая к обработанной ЛЭП:

комбинированная аппаратура для каналов телемеханики, автоматики, релейной защиты и телефонной связи;

специализированная аппаратура для какой-либо одной из перечисленных функций;

аппаратура дальней связи, подключаемая к ЛЭП через устройство присоединения непосредственно или с помощью дополнительных блоков для сдвига частот и повышения уровня передачи;

аппаратура импульсного контроля линий.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Отношение включения

Отношение включения между двумя вариантами использования указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования. Данное отношение является направленным бинарным отношением в том смысле, что пара экземпляров вариантов использования всегда упорядочена в отношении включения.

Семантика этого отношения определяется следующим образом. Когда экземпляр первого варианта использования в процессе своего выполнения достигает точки включения в последовательность поведения экземпляра второго варианта использования, экземпляр первого варианта использования выполняет последовательность действий, определяющую поведение экземпляра второго варианта использования, после чего продолжает выполнение действий своего поведения. При этом предполагается, что даже если экземпляр первого варианта использования может иметь несколько включаемых в себя экземпляров других вариантов, выполняемые ими действия должны закончиться к некоторому моменту, после чего должно быть продолжено выполнение прерванных действий экземпляра первого варианта использования в соответствии с заданным для него поведением.

Один вариант использования может быть включен в несколько других вариантов, а также включать в себя другие варианты. Включаемый вариант использования может быть независимым от базового варианта в том смысле, что он предоставляет последнему некоторое инкапсулированное поведение, детали реализации которого скрыты от последнего и могут быть легко перераспределены между несколькими включаемыми вариантами использования. Более того, базовый вариант может зависеть только от результатов выполнения включаемого в него поведения, но не от структуры включаемых в него вариантов.

Отношение включения, направленное от варианта использования А к варианту использования В, указывает, что каждый экземпляр варианта А включает в себя функциональные свойства, заданные для варианта В. Эти свойства специализируют поведение соответствующего варианта А на данной диаграмме. Графически данное отношение обозначается пунктирной линией со стрелкой (вариант отношения зависимости), направленной от базового варианта использования к включаемому. При этом данная линия со стрелкой помечается ключевым словом «include» («включает»), как показано на рис. 4.11.

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения

Рис. 4.11. Пример графического изображения отношения включения между вариантами использования

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Правила включения виртуальных машин в сеть

Правила включения виртуальных машин в сеть Virtual PC поддерживает возможность включения ВМ в вычислительные сети следующих типов:? в локальную сеть, содержащую только виртуальные машины;? в локальную сеть, содержащую как виртуальные машины, так и хост-компьютер;? в

Варианты включения виртуальных машин в сеть

Варианты включения виртуальных машин в сеть VMware Workstation 5 поддерживает несколько вариантов конфигурирования ВМ для включения в состав вычислительной сети:? Bridged Networking (Сетевой мост) — виртуальная машина конфигурируется с параметрами по умолчанию и при этом может быть

Варианты включения виртуальных машин в сеть

Варианты включения виртуальных машин в сеть Parallels Workstation поддерживает два основных варианта включения ВМ в состав вычислительной сети:? Bridged Networking (Сетевой мост) — виртуальная машина может быть идентифицирована в локальной сети как самостоятельный компьютер. Данный

Создание сценариев включения/выключения и входа/выхода

Создание сценариев включения/выключения и входа/выхода Напомним, что в Windows XP/2000/NT для настройки среды пользователя используются профили (локальные и серверные), в состав которых входят все настраиваемые пользователем параметры: язык и региональные настройки, настройка

Отношение ассоциации

Отношение ассоциации Отношение ассоциации является одним из фундаментальных понятий в языке UML и в той или иной степени используется при построении всех графических моделей систем в форме канонических диаграмм.Применительно к диаграммам вариантов использования оно

Отношение расширения

Отношение расширения Отношение расширения определяет взаимосвязь экземпляров отдельного варианта использования с более общим вариантом, свойства которого определяются на основе способа совместного объединения данных экземпляров. В метамодели отношение расширения

Отношение обобщения

Отношение обобщения Отношение обобщения служит для указания того факта, что некоторый вариант использования А может быть обобщен до варианта использования В. В этом случае вариант А будет являться специализацией варианта В. При этом В называется предком или родителем

Отношение зависимости

Отношение зависимости Отношение зависимости в общем случае указывает некоторое семантическое отношение между двумя элементами модели или двумя множествами таких элементов, которое не является отношением ассоциации, обобщения или реализации. Оно касается только самих

Отношение ассоциации

Отношение ассоциации Отношение ассоциации соответствует наличию некоторого отношения между классами. Данное отношение обозначается сплошной линией с дополнительными специальными символами, которые характеризуют отдельные свойства конкретной ассоциации. В качестве

Отношение агрегации

Отношение агрегации Отношение агрегации имеет место между несколькими классами в том случае, если один из классов представляет собой некоторую сущность, включающую в себя в качестве составных частей другие сущности.Данное отношение имеет фундаментальное значение для

Отношение композиции

Отношение композиции Отношение композиции, как уже упоминалось ранее, является частным случаем отношения агрегации. Это отношение служит для выделения специальной формы отношения «часть-целое», при которой составляющие части в некотором смысле находятся внутри

Отношение обобщения

Отношение обобщения Отношение обобщения является обычным таксономическим отношением между более общим элементом (родителем или предком) и более частным или специальным элементом (дочерним или потомком). Данное отношение может использоваться для представления

12.3. Отношение сигнал-шум

Отношение многие-ко-многим

Отношение многие-ко-многим В этом интересном случае, показанном на рис. 17.2, наша модель данных показывает, что каждая строка в таблице TableA может иметь отношения со множеством строк таблицы TableB, и в то же время каждая строка в TableB может иметь множественные отношения со

Источник

Биполярные транзисторы. For dummies

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включенияДля чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.
Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения
Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Для чего служит связь включения. Смотреть фото Для чего служит связь включения. Смотреть картинку Для чего служит связь включения. Картинка про Для чего служит связь включения. Фото Для чего служит связь включения

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *