Для чего ставят трансформатор
Назначение трансформатора тока и принцип его работы
Своевременная поверка и замена трансформатора тока, обязательные, так как от устройства зависит точность измерений при обслуживании особо мощных электроустановок, безопасность функционирования и взаимодействие с ними. Устройство понижает мощность до нужного уровня, давая возможность подключать измерительные приборы. Выбор трансформатора тока осуществляется под задачи (защита или измерение), конкретную мощность и особенности оборудования.
Понятие трансформатор тока, назначение
Под трансформаторами тока (ТТ) подразумевают аппараты статичного типа с электромагнитным принципом с обмотками (две или больше) на металлическом стержне (магнитопроводе) с выводами для подключения в сеть и к измерительным приборам.
Для чего применяют ТТ:
ТТ работают с переменными, в крайнем случае с пульсирующими напряжением — если подключить к постоянному, то на выходе потенциал будет нулевым. Иногда встречается название «трансформатор постоянного тока», это значит, что в нем используются специальные выпрямители.
Где используются
ТТ широко применяются при транспортировке электроэнергии на большие расстояния, для распределения между приемниками. Они отличаются тем, что предназначены для выпрямительных, стабилизирующих, сигнальных, усиливающих, контрольных узлов, на станциях и объектах, производящих электричество. Именно поэтому к их точности и подключению требования чрезвычайно высокие — даже ничтожные отклонения значимые.
Где чаще всего и зачем применяют:
В чем разница между трансформаторами тока и напряжения
Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.
Трансформаторы | |
---|---|
Тока (ТТ) | Напряжения (ТН, силовые) |
Принцип действия трансформатора тока необходимо отличать: у ТТ нет узкого диапазона номинала вторички и ее ток зависит от такового (измеряемого) первичных витков, поэтому первая всегда замыкается при подсоединенной нагрузке. Монтаж трансформаторов напряжения отличается и по этому пункту. Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал. Основное отличие: функционирует как источник тока со значением защищаемого участка. Данная величина почти независима от нагрузок на вторичке. | Как работает трансформатор напряжения: при переходе между катушками (всегда много витков) меняются характеристики именно питания под параметры потребителя. То есть изоляция и защита тут на втором месте, имеют другую природу. Нагрузка может варьироваться в пределах возможностей изделия. |
Цель — изолирование измерителей от высоких мощностей, для контроля, измерений электросетей. | Трансформаторы напряжения назначение режим работы и принцип действия имеют иные, чем ТТ. Цель — преобразование мощности для питания нагрузок разного номинала. Напряжение, продуцируемое электростанциями чрезвычайно высокое. Для подвода энергии применяют понижающие модели, а при передаче на большие расстояния (когда возможны потери) — повышающие. |
На ЭУ, станциях, где подведена чрезвычайно мощная сеть до такой степени, что требуется дополнительная изоляция даже для замеров. | Для чего нужен трансформатор напряжения: эксплуатация бытовых и подобных электроустройств. Для «подгонки» под приемники энергии, благодаря чему возможно везде пользоваться универсальной сетью. Напряжение изменяется под потребности потребителя, становится подходящим для любой техники. |
Встроен почти в каждый бытовой прибор, есть в общедомовых сетях. |
Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.
Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.
Разновидности
Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.
Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.
Защитные ТТ
Измерительные ТТ
Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.
Устройство и принцип работы
В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.
Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.
Устройство, схема трансформатора тока:
Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.
Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.
Работа ТТ поэтапно на примере схемы
Трансформатор тока как устроен, принцип работы поэтапно:
Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении. Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ.
Важность коэффициента трансформации, класса точности, погрешности
Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).
Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.
Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.
Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.
Монтаж, подключение, опасные факторы
При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.
На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.
По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.
Как подключается ТТ
Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.
Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.
Схема «треугольник и звезда» — для дифференциальной защиты.
Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.
ТТИ подсоединяются простым последовательным подключением первичных витков изделия.
Монтаж
Монтаж трансформаторов тока:
ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.
Расчет
Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.
Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:
Правила, как выбрать трансформатор тока в общих чертах:
Проверка после расчета
Самостоятельная сборка ТТ
Создание ТТ своими руками — отдельная тема, так как для процедуры потребуются широкое описание расчетов с формулами, но упрощенно процесс выглядит как наматывание рассчитанного количества витков медной проволоки на стержень (железо, сталь).
В основе лежит известный принцип. Токи на первичке и вторичке обозначают соотношением. Например, 100/5: величина на первой в 20 раз превышает таковую на второй, то есть, когда на ней есть 100 А, то на другой будет 5 А. Изделие 500/5 понижает 500 А до 5 А (на вторичных витках). Указанные величины зависят от соотношения количества витков.
Поверка
Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока. Разные типы и модели имеют свою периодичность поверочных мер.
Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):
Узнать сроки можно из таких источников:
Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.
При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.
Где купить
Чтобы максимально быстро приобрести трансформатор, можно посетить ближайший специализированный магазин. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Видео по теме
Устройство и принцип работы трансформаторов
Как работает трансформатор
Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.
Что такое индукция
Если по проводу пустить электрический ток, то возникнет магнитное поле.
Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.
У постоянных магнитов наличие магнитного поля объясняется направлением «доменов в одну сторону». Т.е. у каждого отдельно взятого атома есть свое маленькое магнитное поле. У постоянных магнитов эти маленькие магнитные поля направлены в одну сторону. Поэтому у постоянного магнита такое сильное магнитное поле.
И другие материалы можно намагнитить, т.е. сделать так, чтобы магнитные поля были направлены в одну сторону. Так получится «искусственно созданный» магнит.
Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.
А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.
Чем больше материал может создать магнитное поле, тем выше его индуктивность.
Магнитное поле можно увеличить, если сделать катушку.
Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.
Это и есть катушка индуктивности.
Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.
Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.
Изменение магнитного поля создает электрическое поле.
Увеличение индуктивности сердечником
А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.
Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.
Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.
Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.
Взаимоиндукция и принцип передачи тока
Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.
Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.
При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.
Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.
А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.
Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.
Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.
И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.
Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.
Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.
Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.
Устройство трансформатора
А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.
Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.
Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.
Классический трансформатор
Разберем устройство классического трансформатора.
Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.
Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).
На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.
Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.
Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.
Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.
На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.
Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.
Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.
Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.
Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.
Коэффициент трансформации
У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).
Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К 1. У разделительного коэффициент равен 1.
От чего зависит мощность трансформатора
При расчете учитываются следующие параметры:
И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.
Типы классических трансформаторов
Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:
Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.
А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.
Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.
Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.
Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.
После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.
Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.
Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.
Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.
Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.
Режимы работы трансформаторов
Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.
Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.
Импульсные трансформаторы
У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.
Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Отличия импульсных трансформаторов от классических
Тезисно можно выделить несколько различий:
А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.
Почему сердечник не делают сплошным
Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.
Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.
Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.
А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированы. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.
Что делает трансформатор
У трансформатора много полезных и важных функций:
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
Вопросы об устройстве трансформатора
-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.
-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.
-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.
-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.
-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.
Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.
Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.
Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.
-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.
Неисправности трансформаторов
К основным неисправностям трансформаторов можно отнести:
Как проверить на целостность
Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.
Безопасная проверка работы трансформатора
Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.
Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.
Интересные факты про трансформаторы
Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.
Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.