Для чего углубление в поршне

Для чего углубление в поршне

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Этим он кардинально отличается от поршня «обычного» двигателя.

Давайте попробуем разобраться, для чего нужна такая «выемка» и какую роль она играет или может играть.

Топливо впрыскивается во впускной коллектор и там, непосредственно перед клапанами начинает перемешиваться с поступившим через дроссельную заслонку свежим воздухом и после открытия соответствующего клапана смесь воздуха и топлива поступает в цилиндр.
Состав смеси, в конечном итоге, получается гомогенным и стехиометрическим.
Двигатель системы GDI работает (может работать) совсем по-другому, он имеет несколько режимов работы и составы смеси при этом могут быть совершенно разными, «лямбда» может быть равна еденице, больше ее или меньше.

Здесь мы должны коснуться такого понятия, как «Коэффициент избытка воздуха».

Теоретическим и экспериментальным путем было выяснено, что для полного сгорания рабочей смеси требуется определенное и точное соотношение компонентов этой смеси – воздуха и топлива.

Они должны находиться между собой в стехиометрическом соотношении, когда для полного и качественного сгорания 1 кг топлива требуется 14.7 кг воздуха.

Коэффициент избытка воздуха – l (лямбда) показывает, насколько реально имеющееся количество воздуха в камере сгорания отличается от теоретически необходимого, то есть:

Реально имеющаяся в камере сгорания масса воздуха

Теоретически необходимая масса воздуха

(лямбда равняется еденице)

При нарушении пропорций стехиометрического состава ТВС коэффициент l также меняется:

Богатая смесь: «много топлива, мало воздуха» – l

Бедная смесь: «мало топлива, много воздуха» – l >1

Двигатель системы GDI ( в дальнейшем: «Двигатель GDI »), вследствии своих конструктивных особенностей и применения новых технологий может работать на ТВС при таких соотношениях:

Двигатель системы GDI при своей работе может использовать три вида впрыска топлива:

Все эти три вида впрыска топлива придуманы и используются для того, что бы:

— уменьшить выбросы вредных веществ сгорания в атмосферу

— повысить мощность двигателя

— добиться экономии топлива

Когда жидкость или газ движутся в каком-то объеме с относительно небольшой скоростью, то это перемещение происходит послойно, один слой «плывет» около другого и слои не смешиваются.

Такое перемещение называется ламинарным.

Но в двигателе внутреннего сгорания, внутри камеры сгорания скорость движения газо-воздушного потока весьма большая и перемешивание топливо-воздушной смеси происходит за счет явления, которое называется турбулентность.

— давления в камере сгорания

— температуры в камере сгорания

— скорости и направления движения впускаемых воздуха и топлива

— плотности воздуха и топлива

,- происходит хаотическое и мгновенное изменение (колебание) неких средних первоначальных значений топливо-воздушной смеси за счет мгновенных возникновений, взаимодействий между собой и исчезновений неопределенно-множественного

« n » числа вихревых движений.

Все это можно определить коротким словом: «хаос».

Изучением этого понятия – «турбулентность», занимался ученый О.Рейнольдс, который установил, что переход от ламинарного движения к турбулентному происходит в том случае, когда некое безразмерное соотношение скорости жидкости ( читай: «топливо-воздушная смесь»), ее вязкости, температуры и давления внутри или около того места, где происходит это движение, достигает одного и того же значения, что можно выразить относительной формулой:

Число Re называется «числом Рейнольдса» и его численное значение определяет характер движения жидкости или газа.

Небольшое число Re будет означать, что движение ламинарное.

Большое число Re будет означать турбулентное движение.

Когда число Re находится в пределах от 1 до 15, то движение еще ламинарное.

Если больше 20 и растет, то начинается переход от ламинарного к турбулентному.

Когда мы визуально можем определить, что движение уже хаотично и невозможно проследить движение струй, то тогда число Re приближается к 1.000.

Итак, из своих теоретических рассуждений мы узнали, что перемешивание топливо-воздушной смеси в камере сгорания происходит за счет турбулентности.

В камере сгорания, за счет повышенного давления, температуры и других факторов число Re будет составлять несколько тысяч.

То есть, это не что иное, как «развитая турбулентность».

Но ранее мы говорили, что «турбулентность – это Хаос».
Если ничего не менять в камере сгорания, не изменять условий впрыска топлива, не изменять «геометрию» камеры сгорания, то мы получим все тот же «обычный» двигатель внутреннего сгорания и никогда не сможем добиться того, что бы l (лямбда) была меньше или больше еденицы и при этом двигатель работал не только «нормально», но еще мог «выдавать» хороший крутящий момент и экономить топливо.

После многолетних исследований и математического моделирования, инженеры фирмы Mitsubishi пришли к выводу, что для выполнения заявленных требований по экономичности, повышения мощностной отдачи, сохранения и улучшения норм экологической безопасности им нужно:

— изменить форму камеры сгорания
— повысить давление впрыска
— повысить давление в камере сгорания
— изменить направление входящих потоков воздуха в камеру сгорания
— изменить направление движения впрыскиваемого топлива

Что и было сделано.

Но самой основной и трудной была задача под названием «Упорядочить Хаос».

Вспомним что такое «турбулентность».

С одной стороны именно турбулентность нужна в камере сгорания для того, что бы максимально «перемешать» топливо-воздушную смесь, то есть – «гомогенезировать» ее.

Тогда и «поджигание» ее и сгорание будут намного стабильнее и эффективнее.

Но с другой стороны, нельзя было «отпускать» турбулентность, надо было «приручить» ее, выполнить на первый взгляд невыполнимое:

«заставить турубулентность играть по предложенным правилам».

Рассмотрим работу двигателя в режиме

Ultra – Lean Combustion Mode

Это режим работы двигателя на сверх-обедненной ТВС.

В этом случае «лямбда» больше еденицы («мало топлива, много воздуха»).

— поршень начинает свое движение вниз

— открывается впускной клапан и в камеру сгорания поступает воздух.

— так как геометрия впускного коллектора изменена, то протекающий через него воздух к началу поступления в камеру сгорания уже достаточно турубулизирован и имеет число Re около 1,000

— благодаря все той же измененной геометрии впускного коллектора, турбулизированный заряд воздуха имеет еще и свое направление. Он не просто «поступил» в камеру сгорания. Он «ворвался» в нее с такой силой, что достиг достиг поверхности поршня и начал от нее «отражаться».

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне— «закручивание и отражение» заряда воздуха

Тем самым число Re стало быстро увеличиваться.

— впускной клапан закрылся и поршень начинает свое движение вверх.

— турбулизация воздушного заряда ( число Re ) продолжает увеличиваться вследствии увеличения давления и температуры внутри камеры сгорания

— в конце такта сжатия в камеру сгорания впрыскивается заряд топлива:

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне— стрелка на фото: поступившее в камеру сгорания топливо, которое (что хорошо заметно), так же «закручено».

А теперь посмотрим другую кинограмму, где разберем этом вопрос более детальнее:

Этап 1: «Заряд топлива поступает в камеру сгорания»

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

В этот момент в камере сгорания имеется:

— максимально возможное на данный момент число Re (максимальная турбулентность воздушного заряда)

Этап 2: «Топливо «ударяется» о поверхность пошня»

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Если бы впрыск топлива происходил при «обычном» давлении, как на «обычном» двигателе, то перемешивание (гомогенизация) топливо-воздушной смеси была бы неполной.
Давление предопределяет скорость.

Как мы знаем, впрыск топлива в двигателе системы GDI происходит при высоком давлении, около 50 Бар (около 50 кг\см2).

Именно такое первоначальное давление + особая форма форсунки (см. статью в этом же разделе) когда топливо после нее становится «закрученным», позволило добиться того, что заряд топлива до удара о поршень остался практически неизменной формы и состава.

Этап 3: «Изгибание струи топлива»

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Топливо – это та же «жидкость», только обладающая специфическими свойствами.

Кроме того, она имеет еще и «вязкость».

Поступившее в камеру сгорания топливо состоит из «слоев».

Попадая на поршень, один из слоев (нижний, по отношению к поршню) «прилипает» к поверхности поршня (на атомном уровне).

Между слоями возникают силы вязкого трения.

Около поверхности поршня формируется пограничный слой, скорость течения в котором меньше, чем в набегающем потоке топлива, а непосредственно на границе «поршень-топливо» равна нулю.

Так как скорость движения топлива в первом, прилегающем к поршню потоке намного меньше, чем в другом, расположенном «выше», то вследствии сил «вязкостного трения» происходит «отрыв» основного потока топлива от «пограничного» слоя.

Основной поток как бы «скользит» по пограничному слою и, следуя по нему, «повторяет» его форму и «загибается» вверх.

Этап 4: «Топливо отрывается» от поршня»

Надо отметить, что непосредственно внутри «выемки» число Re намного меньше, чем в остальном объеме камеры сгорания.

Это обусловлено особой формой «выемки» и созданными условиями (температура, давление).

Именно по этой причине «выстреленное в выемку» топливо может относительно полно следовать физическим законам и не терять своих «закрученных» свойств до того момента, как оно «оторвется» от поверхности поршня.

Кроме того, при отрыве основного потока топлива от поверхности тела, возрастает его скорость и оно начинает обладать «вращающим моментом».

Вспомним, что заряд топлива, который поступил в камеру сгорания, тоже был «закручен» благодаря особой конструкции самой форсунки.

По тем же законам физики, после «отрыва» основного потока топлива от поверности поршня, даже несмотря на его «закрученность», происходит «дробление» потока: более мелкие, обладающие невысокой скоростью и массой струи «отрываются» от основного потока и начинают «расходиться» по сторонам.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

1 – зона обедненной топливо-воздушной смеси

2 – зона стехиометрического состава смеси

Все остальное пространство занято инертными газами и остатками ОГ.

Именно в зоне №2 состав топливо-воздушной смеси является стехиометрическим, где «лямбда» приблизительно равняется еденице, то есть, именно в этой зоне есть все условия для нормального воспламенения смеси.
Говоря немного по-другому, «Зона №2 является следствием того, что удалось хоть немного, но «приручить турбулентность».

Далее все развивается таким образом:

Искровой заряд свечи зажигания «поджигает» топливо-воздушную смесь, которая начинает гореть послойно – «layer-by-layer» ( позиции 1-2-3-4-5 на нижних рисунках):

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Примечание 1: Действительно, сколько раз приходилось «запутывать голову», пытаясь с первого раза расшифровать написанные аббревиатуры: «ДМРВ», «ДВ», ДПКВ» и так далее.
Хотя проще всего (и правильнее, наверное?) сказать просто и понятно: » MAF-sensor «, » MAP-sensor » и так далее. Не мы, не наша страна Россия, к сожалению, стала первой в массовом производстве систем управления двигателем и не нам внедрять и переламывать сознание и память тех Диагностов, которые были «взрощены» в начале 90-х годов прошлого века на крохах информации на английском языке.

Это режим работы двигателя на сверх-обедненной ТВС.

В этом случае «лямбда» больше еденицы («мало топлива, много воздуха»).

Источник

Устройство поршня

Поршень является основной деталью поршневых двигателей внутреннего сгорания. Поршень служит для восприятия и преобразования энергии сжатого газа в энергию поступательного движения. Поршень, как правило, имеет цилиндрическую форму. Во врем я работы двигател я поршень совершает возвратно поступательное движение внутри цилиндра.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Основные функции поршн я :

Поршень двигателя состоит из трех основных частей:

Днище поршня (воспринимает газовые силы и тепловую нагрузку);

Уплотняющая часть поршня (поршневые кольца, которые препятствуют прорыву газов в картер и передают большую часть тепла от поршня цилиндру двигателя);

Направляющая частьпоршня (юбка) — поддерживает положение поршня и передаёт боковую силу на стенку цилиндра.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

В обиходе автомобилистов часто встречается такое название, как головка поршня. Головкой поршня называют днище поршня с его уплотняющей частью.

Днище поршня

Основная рабочая поверхность детали, которая вместе со стенками гильзы цилиндров и головкой блока формирует камеру сгорания, в которой и происходит сгорание горючей смеси. Днище поршня может иметь различную конструкцию в зависимости от типа и особенностей двигателя.

Виды поршней

В двухтактных двигателях применяются поршни со сферической формой днища, что приводит к повышению эффективности наполнения камеры сгорания горючей смесью и улучшает отвод отработанных газов.

В четырехтактных бензиновых двигателях днище имеет плоскую или вогнутую форму. Углубления – выемки служат для улучшения смесеобразования и уменьшают вероятность столкновения поршня с клапаном.

В дизельных моторах углубления в днище более габаритные и имеют различные формы. Такие выемки называют поршневой камерой сгорания. В процессе работы в поршневых камерах сгорания создаются завихрения, которые способствуют улучшению качества смешивания топлива с воздухом.

Уплотняющая часть поршня

Уплотняющая часть поршня предназначена для установки компрессионных и маслосъемных колец, которые предназначены для устранения зазора между поршнем и стенкой гильзы цилиндров.

Юбка поршн я

Юбка я в л я етс я направл я ющей поршня, обеспечива ет только возвратно-поступательное движение детали.

Источник

Как работает поршень двигателя внутреннего сгорания?

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Устройство детали включает в себя три составляющие:

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.
Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне
Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Источник

Для чего выемки на поршнях

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Устройство детали включает в себя три составляющие:

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.
Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне
Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Поршневая группа состоит из поршня, поршневых колец, поршневого пальца и деталей крепления пальца.

Поршни бензиновых двигателей отливаются из алюминиевого сплава в коккиль (металлическую форму) под давлением. Форма днища поршня определяется типом камеры сгорания. Для уменьшения теплопепередачи в поршень, уменьшения массы и простоты обработки днище должно быть плоским. Однако существует много причин, требующих изменения днища поршня. С точки зрения протекания процесса сгорания оптимальной является компактная камера сгорания с выемкой в днище поршня под свечой зажигания. Иногда в днище поршня приходится делать выемки в зоне расположения тарелок клапанов, чтобы предотвратить их контакт с поршнем в зоне верхней мертвой точки, когда клапаны находятся в приоткрытом положении. При этом приходится учитывать изменения размеров поршня и клапанов в следствии их нагрева. На форму днища поршня могут влиять и требования унификации. Например поршни выполняются с выемки под клапана, чтобы удовлетворить потребности установок различных головок блока устанавливаемых на этот мотор, хотя к некоторым головкам выемки не нужны. Изменяя только форму днища поршня можно выпускать различные модификации двигателей с различными степенями сжатия под разные бензины.

Поршни имеют высокий градиент перепада температур между днищем и юбкой. Поэтому цилиндрическая поверхность поршня в холодном состоянии имеет сложную форму и должна приобретать идеальную цилиндрическую форму при прогреве двигателя до рабочих температур. Обычно верхний пояс в зоне до первого компрессионного кольца имеет наибольшую температуру и соответственно наименьший диаметр, обеспечивающий зазор в холодном состоянии до 0.1 — 0.3 мм. Наличие этого зазора и объема находящегося в нем приводит к вялому сгоранию и повышенному выбросу углеводородов. В зоне верхнего пояса иногда делается проточка для снижения температуры в зоне верхнего компрессионного кольца.

Следующие пояса выполняются с постепенно уменьшающимся зазором. На юбках поршней старых двигателей иногда делался разрез, что нередко повышало вероятность поломки поршней. Поршни современных двигателей выполняются с конической или бочкообразной поверхностью юбки с учетом распределения температур по высоте поршня. Основная нагрузка приходится на поверхность юбки поршня перпендикулярно оси пальца. Поэтому в поперечном сечении юбка поршня делается овальной формы, а в зоне бобышек поршневого пальца (называемой холодильниками) зазор увеличивается, что предотвращает задир при перегреве поршня.

Для облегчения поршня, улучшения смазки и предотвращения задира в юбке выполняются отверстия (круглые, ромбовидные и другой формы). Однако это усложняет производство, уменьшает ресурс, поэтому такие поршни применяются для двигателей спортивных автомобилей.

В зоне верхней мертвой точки происходит так называемая перекладка поршня, то есть до верхней мертвой точки под действием давления газов он прижимается к одной части цилиндра, а после верхней мертвой точки к другой противоположной части. При большом зазоре и холодном двигателе появляется стук поршня, головка поршня перемещается относительно поршневых колец, при перекладке, что приводит к увеличению износа поршневых колец и торцов их канавок в поршне. Для уменьшения этого эффекта ось пальца смещается относительно оси цилиндра или ось цилиндра смещается относительно оси коленчатого вала (дезаксаж или дезаксиал) Для уменьшения зазора в верхней части поршня и, следовательно для уменьшения выбросов СН, а также уменьшения шума от перекладки и износа канавок и самих колец, при отливке поршня в коккиль закладываются жаропрочные вставки в зоне верхнего поршневого кольца. В некоторых конструкциях в зоне бобышек поршневого пальца в коккиль устанавливаются кольца или стальные пластины, предотвращающие его задиры. К числу оригинальных решений относится конструкция поршня у которого на поршневом пальце на отдельных бобышках сидят раздельные головка и юбка. Это позволяет уменьшить зазор в зоне юбки, снизить влияние перекладки поршня

Поршневая группа двигателя включает в себя – поршень, поршневые кольца и поршневой палец. Общая конструкция поршневой группы сложилась еще в период появления первых двигателей внутреннего сгорания. С тех пор ни один из элементов поршневой группы не утратил своего функционального назначения.

Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.

Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуемы. Вот некоторые требования, которым должна соответствовать эта деталь:

– температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С;

– после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя;

– зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.

– изготовление должно быть достаточно дешевым и отвечать условиям массового производства.

Очертания поршня за более стопятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.

Днище поршня – поверхность, обращенная к камере сгорания. Днище, своим профилем, определяет нижнюю поверхность камеры сгорания.

Форма днища зависит от формы камеры сгорания, расположения клапанов, от особенности подачи топливо-воздушной смеси в камеру сгорания и объема самой камеры.

маркировка поршней

Днища разных моделей применяемых на двигателях ВАЗ приведены на рисунке. Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой.

Маркировка наносится на поверхность рядом с отверстием под поршневой палец.

На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка – «08»,»083″, «10».

Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку – «12»и «24» и отличаются глубиной выборки под клапана.

Модели 21126 и 11194 отличаются диаметром.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

маркировка поршней ваз 2106, подгруппа

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.

Уплотняющий участок – это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию – через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру. Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведет к его прогоранию.

По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок. Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070мм.

Для второго компрессионного кольца зазор – 0,035-0,060мм, для маслосъемного – 0,025-,0050мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор – 0,2-0,3мм.

Головку поршня образуют днище и уплотняющая часть.

Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.

«Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности. Юбка обеспечивает соосность положения детали к оси цилиндра блока.

Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий. На поверхность юбки(или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.

Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена. Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.

Одним из факторов определяющих геометрию поршня, является необходимость снижения сил трения. Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.

Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.

В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ. На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова. В разработке последующих конструкций принимают участие немецкие компании.

В процессе работы, различные участки поршня нагреваются не равномерно, следовательно, и тепловое расширение будет больше там, где выше температура и больше объем металла.

В связи с этим, на уровне днища размер выполняют меньшим, чем диаметр в средней части. Таким образом, в продольном сечении профиль будет коническим. Нижняя часть юбки тоже может иметь меньший диаметр. Это позволяет, при движении вниз, в пространстве между юбкой и цилиндром, создавать масляный клин, который улучшает центрирование в цилиндре.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Для компенсации тепловых деформаций, в поперечном сечении поршень выполнен виде овала. Это связано с тем, что в районе бобышек под поршневой палец сосредоточен значительный объем металла. При нагреве, в плоскости поршневого пальца, расширение будет осуществляться в большей степени. Овальность и бочкообразность детали в холодном состоянии, позволяет иметь поршень, приближающийся к цилиндрической форме, при работающем двигателе.

Такая форма изделия создает сложности при контроле его диаметра. Фактический диаметр можно определить, только замеряя его в плоскости перпендикулярной оси отверстия под поршневой палец на определенном расстоянии от днища.

При этом, для разных моделей это расстояние будет отличаться. Тепловые нагрузки порождают еще одну проблему. Поршни изготавливают из алюминиевого кремнесодержащего сплава, а для блока цилиндров используют чугун. У этих материалов разная теплопроводность и разный коэффициент теплового расширения. Это приводит к тому, что в начале работы двигателя, поршень нагревается и увеличивается в диаметре быстрее, чем увеличивается внутренний диаметр цилиндра.

При и без того малых зазорах, это может приводить к повышенному износу цилиндров, а в худшем случае, к заклиниванию поршня. Для решения этой проблемы, во время отливки поршня, в тело заготовки внедряют специальные стальные или чугунные элементы, которые сдерживают резкое изменение диаметра. Для уменьшения теплового расширения и отвода тепла, на некоторых типах двигателя, используются системы подачи масла во внутреннюю полость поршня.

Поршневой палец обеспечивает шарнирное соединение поршня и верхней головки шатуна. Во время работы двигателя, на поршневой палец воздействуют значительные переменные силы.

Палец и отверстия под палец должны сопрягаться с минимальным зазором, обеспечивающим смазку. На двигателях ВАЗ используется два типа шарнирного соединения «поршень-палец-шатун». На поршнях моделей 2101, 21011, 2105, 2108, 21083 – палец устанавливается в верхней головке шатуна по плотной посадке, исключающей его вращение. Отверстие в поршне под поршневой палец выполнено с зазором, обеспечивая свободное вращение.

В дальнейшем от этой схемы отказались и перешли на схему с «плавающим» пальцем. На поршнях моделей 21213, 2110, 2112, 21124, 21126, 11194, 21128 – палец устанавливается с минимальным зазором и в головке шатуна, и в отверстиях поршня. Для исключения осевого смещения пальца, в поршне, в отверстиях под поршневой палец устанавливаются стопорные кольца. Во время работы, у пальца есть возможность проворачиваться, обеспечивая равномерный износ поверхностей.

Для обеспечения надежной смазки пальцев, в бобышках предусмотрены специальные отверстия.

По результатам фактического замера отверстия под поршневой палец, поршням присваивается одна из трех категорий(1-я, 2-я, 3-я). Разница в размерах для категорий составляет – 0,004мм. Номер категории клеймится на днище. Для обеспечения необходимого зазора, поршневые пальцы, по наружному диаметру подразделяются на три класса.

Отличие в размерах составляет – 0,004 мм. Маркировка класса производится краской по торцу пальца: синий цвет – первый класс, зеленый – второй, красный – третий класс. При сборке, поршню первой категории должен подбираться палец первого класса и т.д.

Особенностью работы шатунного механизма, является то, что до достижения верхней мертвой точки, поршень прижат к одной стороне цилиндра, а после прохождения ВМТ – к другой стороне цилиндра.

При приближении к верхней мертвой точке, на поршень действует максимальная нагрузка, следовательно растет сила давления на палец. Возростающие силы трения препятствуют повороту поршня на пальце. При таких условиях поворот может происходит скачкообразно, со стуком о стенку цилиндра.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

Для того, чтобы снизить динамические нагрузки и шум, применяют поршни со смещенным отверстием под поршневой палец. Ось отверстия смещена в горизонтальной плоскости от оси поршня. В работающем двигателе это приводит к возникновению момента силы, который облегчает преодоление сил трения. Такое конструктивное решение позволяет добиться плавности, при смене точек контакта поршня с цилиндром.

На такие изделия обязательно наносится метка для правильной ориентации при его установке. Однако, чем больше будет износ цилиндров и юбки, тем в большей степени будет проявляться стук в цилиндре.

Существуют поршни, в которых применяется не только горизонтальное смещение оси пальца, но и вертикальное. Такое смещение ведет к уменьшению компрессионной высоты.

Поршни, с дополнительным смещением оси отверстия под палец вверх, применяются для тюнинговой доработки двигателя. В качестве основной характеристики для таких поршней используется величина смещения, указывающая на сколько смещен центр отверстия под палец, по сравнению со стандартным изделием.

На рынке продаж, поршень представлен значительным количеством отечественных и иностранных производителей. Независимо от производителя, они должны соответствовать требованиям, рассчитанным для конкретной модели двигателя. Поршни, входящие в комплект, не должны отличаться по массе более чем на ±2,5 грамм. Это позволит снизить вибрации работающего двигателя. Для розничной сети, в комплекты подбираются поршни одной весовой группы. В случае необходимости можно осуществить подгонку поршня по массе.

Зазор между цилиндром и поверхностью поршня должен соответствовать величине установленной для данной модели двигателя.

Поршни номинального размера по своему диаметру относят к одному из пяти классов. Различие между классами составляет 0,01 мм.

Классы маркируются на днище буквами – (А, В, С, D, Е).

В качестве запасных частей поставляются поршни классов – А, С, Е. Этих размеров достаточно, чтобы осуществить подбор деталей для любого блока цилиндров и обеспечить необходимый зазор.

Поршни ВАЗ 11194 и ВАЗ 21126 имеют только три класса (A, B, C) с размерным шагом – 0,01 мм. Кроме номинальных размеров, изготавливаются поршни 2-х ремонтных размеров, с увеличенным наружным диаметром на 0,4 и 0,8 мм.

Для распознавания, на днищах ремонтных изделий ставится маркировка: символ «треугольник» соответствует первому ремонтному размеру(с увеличением наружного диаметра на 0,4 мм), символ «квадрат» – увеличение диаметра на 0,8 мм. До 1986 г. ремонтные размеры отличались от современных.

Так для двигателя 2101 существовало три ремонтных размера: на 0,2мм., 0,4мм., 0,6 мм; для двигателя 21011 два размера: 0,4 мм. и 0,7 мм.

Для чего углубление в поршне. Смотреть фото Для чего углубление в поршне. Смотреть картинку Для чего углубление в поршне. Картинка про Для чего углубление в поршне. Фото Для чего углубление в поршне

В качестве материала для изготовления поршней применяются сплавы алюминия. Использование кремния в составе сплава, позволило снизить коэффициент теплового расширения и увеличить износостойкость.

Сплавы, где содержание кремния может достигать 13%, называют – эвтектическими. Сплавы с более высоким содержанием кремния относят к заэвтектическим сплавам. Повышение процента содержания кремния улучшает теплопроводные характеристики, однако приводит к тому, что при охлаждении в сплаве происходит выделение кремния в виде зерен размером 0.5-1.0мм.

Это приводит к ухудшению литейных и механических свойств. Для улучшения физико-механических свойств, в сплавы вводят легирующие добавки меди, марганца, никеля, хрома.

Существует два основных способа получения заготовки поршня. Отливка в кокиль – специальную форму, является более распространенным способом. Другой способ – горячая штамповка(ковка). После этапов механической обработки, изделие подвергают термической обработке для повышения твердости, прочности и износостойкости, а также для снятия остаточных напряжений в металле.

Структура кованого металла позволяет повысить прочностные характеристики изделия. Но есть существенные недостатки кованых изделий классической конструкции( с высокой юбкой)– они получаются более тяжелыми. Кроме того, в кованных деталях, невозможно использовать термокомпенсирующие кольца или пластины. Увеличенный объем металла ведет к увеличенной тепловой деформации и необходимости увеличивать зазор между поршнем и цилиндром.

И как следствие – повышенный шум, износ цилиндров, расход масла. Применение кованых поршней оправдано в тех случаях, когда большую часть времени двигатель автомобиля эксплуатируется на предельных режимах.

В современном конструировании поршней, наблюдаются следующие тенденции: уменьшение веса, использования «тонких» поршневых колец, уменьшение компрессионной высоты, использование коротких поршневых пальцев, применение защитных покрытий.

Все это, нашло свое применение, в конструкции Т-образных поршней. Наименование конструкции обусловлено схожестью профиля детали с буквой «Т». На этих изделиях, юбка уменьшена и по высоте и по площади направляющей части. В качестве материала для изготовления таких поршней используется заэвтектический сплав, с большим содержанием кремния. Поршни Т-образной конструкции практически всегда изготавливаются горячей штамповкой.

Принятие разработчиками решения о применении той или иной конструкции поршня всегда предшествует расчет и глубокий анализ поведения всех узлов шатунно-поршневой группы.

Детали современных двигателей рассчитаны на пределе возможностей конструкции и материалов. В таких расчетах предпочтение отдается конструкциям с минимальной стоимостью обеспечивающих утвержденный ресурс и не более. Поэтому любое отклонение от штатных режимов работы двигателя ведет к сокращению ресурса тех или иных деталей и узлов.

Вопрос-ответ

Для чего выемки на поршнях ваз?

Это выемки под клапана. Для того что бы не погнуло клапана при обрыве.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *