Для чего уголь в металлургии

Что такое металлургический уголь и чем он отличается от других видов угля?

Содержание:

Уголь – осадочная порода растительного происхождения, которой присуще свойство горючести. В основном уголь состоит из углерода и различного рода примесей. Процент содержания примесей определяет качество породы.

Классификация и разновидности каменного угля.

Состав угля определяется его возрастом. Самым молодым считается бурый уголь, затем следует каменный, а более старый – антрацит. Наиболее качественный уголь – антрацит, так как по мере старения происходит накопление углерода и уменьшение концентрации летучих веществ в угле. К примеру, бурый уголь в среднем имеет более 50% летучих примесей, каменный уголь – 40% примесей, антрацит – всего 5-7%.

Кроме углерода и летучих веществ, в состав угля входят негорючие элементы, образующие золу при горении угля. Зола играет роль загрязнителя окружающей среды, а также спекается в шлак, что затрудняет горение угля и, соответственно, уменьшает количество теплоты, выделяемое им при горении.

Еще один компонент, затрудняющий применение угля – сера. При сгорании серы происходит выделение серных окислов, что приводит к концентрации серной кислоты в атмосфере.

Чем качественнее уголь, тем выше удельная теплота его сгорания. У бурого угля она составляет 3000-5000 ккал/кг, у каменного угля – 5000-5500 ккал/кг, у антрацита – 7400 ккал/кг.

По марке различают 9 разновидностей каменных углей:

Что такое металлургический уголь?

Коксовый уголь.

Коксовый каменный уголь представляет собой камни абсолютно различных размеров и цветов: от блестяще-серого до матово-черного или серого цветов. После процесса коксования каменных углей получается до 78% этого продукта. Главными особенностями каменноугольного кокса являются следующие свойства:

Коксование.

Коксование проходит в три этапа:

На данном этапе происходит очищение исходной массы угля от минеральных примесей, а затем измельчение угля до зерен диаметром 3 мм. Далее смешиваются различные сорта угля, и полученная масса (шихта) просушивается.

Для коксования полученную массу погружают в специальную печь. Стены печи выполнены из огнезащитного кирпича. Они раскаляются продуктами сгорания некоторых газов, в том числе коксового, а также их смесей. Печь нагревается в течение 15 часов при температуре от 900 до 1500 градусов Цельсия.

Для чего уголь в металлургии. Смотреть фото Для чего уголь в металлургии. Смотреть картинку Для чего уголь в металлургии. Картинка про Для чего уголь в металлургии. Фото Для чего уголь в металлургии

Полученный продукт (кокс) выталкивают в железнодорожные вагоны специальными устройствами, кокс охлаждается непосредственно в них с помощью воды или с помощью инертного газа.

Газовые продукты разделяются за счет добавления в смесь распыленной воды (около 75 градусов Цельсия). Смесь разделяется на смолы, а также парогазовые остатки. Парогазовые остатки фильтруются, из них получают 14-15% от начальной массы угля коксового газа, который затем применяется для нагрева печи.

Применение кокса.

Каменноугольный кокс используется для нескольких целей, основная – выплавка металлов на металлургических заводах. Так, каменноугольный кокс применяется при изготовлении чугуна, при восстановлении железной руды, его используют в качестве разрыхлителя для различных шихт. Кроме того, металлургический уголь используют в качестве топлива на литейном производстве, а также в быту.

Источник

Что такое кокс металлургический — как получают и где используется

Кокс представляет собой остаток, который формируется в результате сильного нагрева какого-либо органического материала без доступа воздуха. Подобную процедуру термической переработки твердого или жидкого топлива называют коксованием. В ходе такой обработки увеличивается концентрация углерода в исходном материале, а содержание влаги и различных примесей уменьшается. Остаток, полученный на выходе, затем применяют в качестве качественного промышленного топлива.

Кокс в металлургии это достаточно твердый продукт темного (серого либо черного) цвета, имеющий пористое строение. Получают его путем обработки каменного угля без доступа атмосферного воздуха при рабочей температуре от 950 до 1100 градусов Цельсия.

Свойства и состав кокса

Характеристикой составляющих кокса служит соотношение различных химических веществ и наличие минеральных примесей в органическом материале. В зависимости от месторождения природного сырья (угля) состав кокса в процентном соотношении может быть не одинаков.

В целом он выглядит так:

Точной химической формулы для кокса не существует, поэтому применяют общие характеристики. Следует отметить, что в процессе хранения и перевозки кокса его основные свойства, характеристики и соотношение компонентов не изменяются.

В перечень важных физических показателей кокса входит:

Свойства и структура конечного материала напрямую зависят от применяемой угольной смеси, температуры рабочей среды, скорости разогрева коксующейся массы. Прочный и устойчивый к истиранию каменноугольный кокс получают путем повышения температуры на последней стадии при его производстве.

Увеличение продолжительности времени обработки и снижение скорости разогрева массы приводит к формированию более крупных фракций кокса. Большое количество газовых сортов угля в шихте приводит к повышению пористости и снижению прочности конечного продукта. Для повышения горючести кокса в шихту вводят сорта угля, отличающиеся низкой степенью метаморфизма, снижают рабочую температуру и длительность последнего этапа обработки.

Одним из важных показателей служит пористость материала. В перечень его слабых мест входят трещины, поры различного размера, а также спекшиеся включения. Эти дефекты естественным образом оказывают влияние на твердость конечного продукта.

Наличие и размер пор определяет горючесть кокса, а этот показатель имеет большое значение при применении. Рабочая температура, возникающая при сжигании кокса, должна соответствовать требованиям технологии и быть постоянной в течение всего производственного цикла. В противном случае нестабильность разогрева доменной печи повлечет за собой различные дефекты, отрицательно влияющие на качество конечной продукции литейного производства.

Трещины, которые ослабляют поры, считаются более серьезным дефектом при оценке качества кокса. Они серьезно ухудшают показатель твердости топлива, что отрицательно влияет на его технические характеристики. Кокс для литейного производства тщательно отбирают с учетом этих показателей. В целях улучшения качества кокса для металлургии при выборе сырья для его производства учитывают состав и фракции исходных материалов. Кроме того, большое внимание уделяют определению рабочей температуры и продолжительности периода обработки.

Применение кокса

Каменноугольный кокс используют как эффективное и бездымное топливо при выплавке чугуна, для восстановления железной руды, в качестве разрыхлителя шихты.

Различают два вида кокса:

В литейных цехах данный материал применяют в качестве ваграночного топлива для специальных печей. Возможно применение кокса в качестве топлива в быту, а специальные виды предназначены для химической отрасти и производства ферросплавов.

Нефтяной кокс, применение которого при изготовлении термостойких деталей основано на инертности, используют для выпуска электродов, проводников, деталей, предназначенных для агрессивной химической среды.

Для восстановления железной руды, выплавки чугуна, производства активированного угля применяют иногда торфяной кокс, схожий по химическому составу с каменноугольным аналогом.

Пековый кокс нужен для изготовления анодов. Кроме того, он востребован в цветной металлургии.

Особенности металлургического кокса

Выглядит кокс как россыпи твердых фракций различного размера, цвет материала варьируется от черного до темно-серого цвета. Топливо обладает пористой структурой. Примечательно, что плотность кокса разделяют на кажущуюся (примерно 1 г/см3) и истинную (1,80-1,95 г/см3). Этот показатель напрямую зависит от исходного сырья и особенностей технологического процесса производства. Большое содержание газовых углей в шихте позволяет получить менее плотный продукт с хорошей воспламеняемостью.

Повысить прочность топлива возможно путем уменьшения рабочей температуры коксования до 950 градусов. Металлургический кокс различается по составу сырья в зависимости от конечного назначения. Топливо для плавки чугуна разительно отличается от того, что требуется для литейного производства в ваграночных печах.

Наиболее востребованным в металлургическом производстве является литейный кокс. Технические требования к нему регламентированы ГОСТ 3340-88. Размер отдельных фракций колеблется от 60 до 80 мм. Эта разновидность кокса востребована на производстве различных марок стали, ферросплавов, различных отраслях машиностроения и тяжелой промышленности.

К достоинствам литейного кокса необходимо отнести:

В ферросплавном производстве востребовано топливо, отличающееся мелким размером отдельных фракций (от 10 до 25 мм). По этому показателю литейный кокс не соответствует технологическим требованиям. Учитывая отличные качественные характеристики, для производства ферросплавов применяют отходы литейного кокса (побочные продукты).

Производство кокса

Это очень важная отрасль, объем которой, согласно статистике, ежегодно достигает 27 миллионов тонн. Именно такое количество требуется для удовлетворения запросов литейного производства и металлургии.

Получают кокс путем нагревания исходного сырья без доступа воздуха. Технология основана на гидролизе, конечной целью которого является процесс отделения углерода от иных веществ, имеющихся в составе используемого угля.

Делают кокс из угля:

Наиболее дорогостоящим вариантом сырья является коксующийся уголь.

Для перевозки угля используют насыпные вагоны, которые при необходимости загоняют в специальные ангары для отогрева шихты в зимнее время. Первым этапом производства служит подготовка шихты. Поступивший на предприятие уголь сортируют на разные по составу и свойствам группы. Затем материал подвергают дроблению, и перемешивают.

Операцию по дозировке шихты выполняют при помощи специальных весов, работающих в автоматическом режиме. Шихту в обязательном порядке обогащают путем мытья, обеспыливания, грохочения, флотации. Это дает возможность убрать из шихты ненужные примеси. Шихту после обогащения тщательно просушивают, затем дробят для получения фракций диаметром в 6 мм. На хранение полученный материал помещают в специальные угольные башни с накопительными бункерами.

Для чего уголь в металлургии. Смотреть фото Для чего уголь в металлургии. Смотреть картинку Для чего уголь в металлургии. Картинка про Для чего уголь в металлургии. Фото Для чего уголь в металлургии

Для отправки готового сырья в коксовые батареи используют загрузочные вагоны, имеющие засыпной способ погрузки. Коксовые батареи сформированы из нескольких технологических камер, объединенных в систему для непосредственного изготовления конечного продукта.

Сооружение обладает внушительными габаритными размерами. Длина от 13 до 15 метров, высота 5-5,5 метров, ширина до 0,5 метра. Внутренние стены облицованы огнеупорным кирпичом. Солидные размера камер позволяют создать условия для достаточно быстрого технологического цикла.

Камеры имеют верхнюю загрузку через люки, а для отвода газов предусмотрены торцевые дверки. Конечный продукт выталкивают по рельсам при помощи специальной машины. Раскаленную массу принимает специальный тушильный вагон. Важнейшим условием получения качественного кокса является абсолютное исключение попадания в коксовые камеры воздуха. Добиться этого удается путем строгого соблюдения технологии производства.

На начальном этапе осуществляется отделение из массы сырья влаги и газов. При этом шихта начинает плавиться, а ее объем уменьшается. При дальнейшем повышении рабочей температуры наблюдается увеличение объема из-за выделения пара и газов. После этого шихта приобретает твердость, формируется «пирог». Газы выходят по специальным отводам в газосборные камеры.

Технологический процесс длится от 14 до 17 часов в зависимости от размеров рабочей установки, состава применяемой сырьевой смеси, рабочей температуры. После очистки камер посредством выталкивателя герметичные двери закрываются, и установка готова к загрузке новой партии шихты.

Готовый продукт нуждается в тушении, поскольку при контакте с воздухом происходит процесс самовозгорания. Тушильные вагоны перемещаются в специальную башню, где происходит гашение кокса при помощи воды. После этого материал высыпают на бетонную площадку-рампу. Около 20 минут требуется для того, чтобы масса остыла. Следующим этапом является перемещение кокса на сортировку при помощи транспортерных лент.

Попутные продукты

Смесь пара и газов, выделяющихся при нагревании шихты в коксовых камерах, именуют прямым коксовым газом. В результате выпуска из камеры 1000 кг кокса в полученном прямом газе содержится:

В течение длительного периода времени это был единственный источник получения бензольных углеводородов, применяемых в качестве основы для органического синтеза. Переработка других попутных отходов позволяет получить около 3 сотен сложных химических соединений.

Особенности нефтяного кокса

Исходным сырьём в данном случае служат отходы от термической переработки основного продукта. В зависимости от содержания серы выделяют:

Отличительной чертой нефтяных коксов служит наличие четкой маркировки для каждого типа топлива, которая определяет назначение материала.

Кокс, предназначенный для изготовления анодов и анодной массы, отмечен маркировкой КЗА. При его производстве применяется технология медленного коксования, а размер фракций на выходе колеблется в пределах от 8 до 250 мм. Топливо необходимо для технологического цикла в производстве алюминия.

Для чего уголь в металлургии. Смотреть фото Для чего уголь в металлургии. Смотреть картинку Для чего уголь в металлургии. Картинка про Для чего уголь в металлургии. Фото Для чего уголь в металлургии

Важной сферой применения нефтяного кокса служит производство карбидов кальция и кремния, востребованных в машиностроительной отрасли, строительном производстве, изготовлении защитных пленок.

При производстве нефтяного кокса применяют замедленный процесс в условиях низкого давления с границами рабочих температур от 480 до 560 градусов. На выходе помимо основного продукта (нефтяного кокса) получают:

Сложная технология предполагает применение трех разных типов рабочих установок. В мировой практике чаще всего используют замедленное (полунепрерывное) коксование в специальных установках, функционирующих в условиях атмосферного давления. Востребованность кокса различных типов в металлургии, химической промышленности и других отраслях предполагает рост объемов производства.

Источник

Коксующиеся угли

Для чего уголь в металлургии. Смотреть фото Для чего уголь в металлургии. Смотреть картинку Для чего уголь в металлургии. Картинка про Для чего уголь в металлургии. Фото Для чего уголь в металлургии

История каменного угля насчитывает до 300 миллионов лет. Он образовался из древесных остатков в так называемом каменноугольном периоде истории земли, когда еще миллионы лет оставались до старта первого птеродактиля, когда землю населяли уродливые стегоцефалы, когда росли дремучие леса древовидных папоротников и хвощей, а в заливах теплых морей скапливались сносимые реками остатки растительности и морских водорослей.

Уже много лет ученые спорят о том, что происходило с остатками деревьев и водорослей, покрытых осадочными породами, когда море затапливало районы накопления растительного материала, когда при горообразовании то подымался, то опускался первичный материал, в результате чего изменялись температура и давление. Растительный материал без доступа воздуха обращался в черный блестящий или матовый каменный материал, отличающийся высоким (до 80 – 95%) содержанием углерода.

Коксохимика интересуют только те угли, которые обладают уникальными свойствами – спекаемостью и коксуемостью.

В печь для сухой перегонки засыпают тонкоизмельченный материал – кусочки угля размером меньше трех миллиметров, а получают большие очень прочные куски серебристого цвета хорошо проплавленного материала. Если уголь не проплавился в однородную массу, а как бы слипся друг с другом, то получатся менее прочные куски. Что же происходит с этими углями при сухой перегонке, то есть при нагреве без доступа воздуха?

При достижении температуры 380 – 420° C угли, выделяя газообразные и жидкие продукты разложения, превращаются в вязкую, пластичную тестообразную массу, которая при температуре 450 – 500° C затвердевает, превращаясь в монолит. Если остановить подъем температуры и даже охладить массив размягченного угля, масса все равно затвердеет. При дальнейшем повышении температуры до 900 – 1000° C из образовавшегося монолита «полукокса» продолжают выделяться продукты разложения угольного вещества. Объем полукокса уменьшается, он претерпевает усадку, трескается и в результате получается кусковой материал – кокс.

Процесс образования кокса у разных коксующихся углей проходит по-разному. Дело в том, все они по свойствам мало похожи друг на друга, хотя и обладают способностью переходить при нагреве без доступа воздуха в пластическое состояние, о котором мы упомянули выше. Для получения кокса необходимо, чтобы уголь обладал «спекаемостью» или «спекающей способностью».

Попытаемся качественно оценить различия свойств коксующихся углей. Для этого возьмем тонкоизмельченные образцы и поместим одинаковые их количества (обычно один грамм) в фарфоровые тигельки. А потом эти тигельки, накрытые крышками, установим в нагретую до 800 – 850° C печь. Очень скоро из-под крышки начнут выделяться летучие продукты, которые воспламеняются и сгорают. Когда выделение летучих продуктов закончится, тигельки извлечем, охладим и снова взвесим, чтобы определить количество выделенных при нагревании паров и газов.

Существует тесная связь между выходом летучих веществ и внешним видом образующегося кокса. В большинстве случаев, если потеря массы превышает 40%, в тигельке остается неспекшийся, порошкообразный кокс. Если выход летучих веществ составляет больше 35%, но меньше 40 – 42%, то кусочек кокса в тигле, называемый коксовым корольком, – спекшийся, нередко вспученный, рыхлый, не очень прочный. Выход летучих составил 26 – 35%, и остаток оказывается спекшимся, оплавленным, вспученным, умеренно плотным, пористым. Если масса угольного образца уменьшилась на 20 – 25%, то кусочек кокса в тигле получается плотный, сплавленный, прочный. При количестве летучих 17 – 20% королек, спекшийся и умеренно плотный, а угли с выходом летучих менее 15 – 17% очень часто образуют неспекшийся порошкообразный или просто спёкшийся королек. Это уже основа для классификации.

Так, по выходу летучих и виду коксового королька угли называют соответственно длиннопламенными, газовыми, жирными или коксовожирными, коксовыми, отощенными спекающимися и, наконец, тощими. Такие ряды можно построить почти для каждого угольного бассейна. Хороший металлургический кокс можно приготовить из коксовых углей. Из одних же газовых или тощих углей хорошего кокса не получишь. Однако можно получить его из смеси этих углей с коксовыми и жирными.

Что же происходит с углем при нагревании? Как же образуется кокс? Для этого надо, прежде всего представить химическую формулу угля. Уголь – очень сложная система, и написать точную формулу его невозможно. Можно лишь изобразить модель, более или менее отображающую поведение угля при нагревании. Одна из таких моделей представляет уголь как систему, состоящую из блоков, содержащих чередующиеся двойные связи шестичленных углеродных колец (химики их называют ароматическими), соединенных кольцами из звеньев СН2.

Следует отметить, что новейшие исследования заставляют сомневаться в исключительно ароматической основе угольного вещества.

У разных углей разное количество таких шестичленных колец в блоке. Так, у газовых углей в этих блоках по три-четыре кольца, у жирных – по четыре-пять, у тощих – три-девять. При нагревании угля отдельные цепочки разрываются. Вещество распадается на молекулы меньших размеров, которые и образуют жидкоподвижную и газовую фазы тестообразной пластической массы. Аналогия с тестом оказывается довольно полной. Тесто в квашне подымается. Из него выделяются пузырьки углекислого газа, а если сформованное тесто поставить в печь, то из нее Вы вынимаете готовый пирог.

Неустойчивы и обломки угля, образовавшие пластическую массу, они распадаются. Часть угольного вещества обращается в газы и пары, вырывающиеся из вязкой массы, вспучивающие ее. Более массивные блоки колец соединяются друг с другом, образуя твердое неплавкое вещество – полукокс, представляющее собой систему из огромного числа ароматических колец. Полукокс теряет водород, соединенный с атомами углерода на крайних кольцах. Свободные от водорода блоки получают возможность соединяться друг с другом, и при 900 – 1000° C полукокс становится коксом. Будет кокс прочным или рассыплется – зависит от того, какими свойствами, прежде всего вязкостью и термоустойчивостью, будет обладать пластическая масса и как из нее станут выделяться газы.

Уголь не «плавится» весь сразу, да и сама вязкая масса неустойчива. В каждой крупинке угольного вещества идут непрерывные и одновременные процессы расщепления на фрагменты с образованием пластической массы и затвердевания этой массы. Все зависит от относительных скоростей этих двух процессов. Если мезофаза (промежуточное состояние) оказывается довольно устойчивой, если скорость ее распада, обращения в полукокс меньше скорости образования, то одновременно количество мезофазы оказывается значительным. Зерна угольного вещества хорошо сплавляются, образуя прочный кокс. Если мезофазы много, то она может связать и плохо спекшийся или вообще неспекающийся материал. Такими свойствами обладают, например, коксовые и жирные угли.

Газовые угли переходят в пластическое состояние при сравнительно невысоких температурах (350 – 370ºС). Однако их мезофаза быстро разлагается и поэтому большого количества пластического материала не образуется. К тому же при разложении такой мезофазы выделяется очень много газов, которые вспучивают пластический материал и разрывают образующийся полукокс. Поэтому-то из одних газовых углей хороший прочный кокс приготовить не удается.

У тощих углей переходит в «плавкое» состояние лишь малая их часть. Пластического материала образуется немного, и он не может сцементировать всю массу угля. Кусочки угля, полукокса, лишь склеиваются в точках соприкосновения. Чтобы получить при «сухой перегонке» прочный кокс, уголь должен обладать своеобразным свойством – «спекаемостью». Только спекаемость углей позволяет из мелкораздробленного материала получать монолитные куски.

Правда, может возникнуть вопрос. А зачем нужно коксовать мелкий уголь? Не лучше ли из крупных кусков хорошо спекающегося угля получать крупные куски кокса, но меньших размеров, чем куски угля? Можно! Так и делали когда-то. Но, во-первых, крупных кусков угля размером больше 30 миллиметров, которые могут дать пригодный по размерам кокс, добывают очень мало. Даже когда уголь добывали вручную, откалывая куски угля обушком или кайлом, образовывалось значительное количество (до 20 – 30%) мелочи. Теперь же уголь добывают и транспортируют машинами, и в угле, идущем на коксование, содержится 60 – 70% кусочков меньше трех миллиметров. Поэтому и крупные куски хорошо спекающегося угля уже почти сто лет дробят, чтобы в смеси с мелочью использовать для коксования максимальное количество спекающихся углей.

Да и не всякий хорошо спекающийся уголь можно коксовать самостоятельно. Такие угли при нагревании без доступа воздуха образуют очень вязкую, плотную пластическую массу. Газы и пары, образующиеся в процессе коксования, не могут быстро выйти через плотный и вязкий слой и развивают огромное давление. Если стенки камеры и останутся целыми, то вытолкнуть из коксовой печи готовый кокс, полученный при коксовании таких «распирающих» углей, невозможно.

Обычно же в результате того, что из коксующихся углей при коксовании удаляется 25 – 30% летучих веществ, происходит усадка массива. Между готовым коксовым «пирогом» и стенкой камеры коксовпания возникает усадочный шов 5 – 15 миллиметров, и кокс свободно выталкивается из камеры коксования.

Однако запасы коксовых и жирных углей сравнительно невелики (15 – 20% от общего количества каменных углей) и добывать такие угли приходится с больших глубин: 700 – 1000 метров. Газовых углей намного больше и залегают они неглубоко. Поэтому их можно добывать открытым способом (в карьере) и стоят они намного дешевле жирных и коксовых.

С первых дней существования большой коксохимии перед учеными встала задача – получать кокс из угольных смесей, содержащих не только жирные и коксовые угли, но также газовые и тощие угли. Советскими учеными была создана наука о составлении угольных смесей – шихт, в которые можно включить много дешевых и доступных углей. И очень большой вклад в развитие этой науки внес член-корреспондент АН СССР Леонид Михайлович Сапожников.

Какой уголь спекается лучше, а какой хуже? И можно ли коксовать хорошо спекающийся уголь без возникновения опасных распирающих усилий? Как выразить точными цифрами спекающую и коксующую способности углей различных бассейнов, месторождений, пластов без этих неопределенных выражений «больше – меньше», «лучше – хуже»?

То есть, как из неопределенных индивидуальных, основанных только на личном опыте отдельного специалиста качеств материала угля, извлечь научные основы, заключающиеся в том, чтобы спекающие и коксующие свойства углей были выражены точными цифрами и чтобы угли на основании этих цифр были классифицированы?

Измерить спекающие свойства углей пытались и раньше. В приборе, созданном под руководством члена-корреспондента АН СССР Леонида Михайловича Сапожникова (пластометрическом аппарате) наиболее удачно сочеталось получение одновременной характеристики спекающих, распирающих и усадочных свойств углей.

Всего 100 граммов измельченного угля нужно для испытания. Нагрев ведется с одной стороны, снизу специального стакана, куда засыпается проба. В процессе нагрева пластометрического стакана уголь слоями переходит (или не переходит) в пластическое состояние, образуя слой размягчающегося угля, имеющий довольно четкие границы, которыми являются, с одной стороны, образовавшийся полукокс – твердый, а с другой – граница размягчившегося угля.

Специальной иглой с делениями (пластометром) можно, опуская ее в слой угля, достигнуть верхней границы пластического слоя и, проколов его до полукокса, измерить толщину этого слоя. Периодические измерения на протяжении всего времени испытания позволяют получить весьма надежные средние значения. Одновременно с измерением толщины пластического слоя в миллиметрах (у) измеряется конечная усадка кокса ( x ) и на графике фиксируется вид кривой, которую выписывает рычаг, принимающий на себя давление, развиваемое углем при коксовании. Эта кривая характеризует состояние пластической массы, ее вязкость, газопроницаемость, и она характерна для каждой марки угля.

С помощью пластометриче c кого метода Л.М.Сапожникова, при одновременном учете данных технического анализа углей (выхода летучих веществ и вида тигельного коксового королька) оценивались и в настоящее время оцениваются и классифицируются угли различных бассейнов, месторождений, пластов.

На основании данных пластометрических испытаний (толщины пластического слоя) угли шихтуют, то есть смешивают на заводах в строго определенных пропорциях.

Исследованиями углей, опытными коксованиями установлено, что из смеси газовых, жирных, коксовых и тощих углей можно получить кокс, по прочности удовлетворяющий требованиям доменщиков, если толщина пластического слоя смеси углей – шихты будет 14 – 16 миллиметров.

Вот и подбирают угли разных марок с различным пластическим слоем таким образом и в таком количестве, чтобы общая спекаемость шихты, идущей на коксование, была в этих пределах. Это задача исследователей. А вот подготовить уголь к коксованию да еще 3 – 5 млн. т в год – это задача заводских углеподготовителей.

Наука об угле и, в особенности, тот ее раздел, который помогает определить угли наиболее подходящие к производству высококачественного кокса идет вперед. Информативность пластометрического метода определения спекаемости углей уже недостаточна.

Почти сто лет известно, что угольное вещество состоит из нескольких видов так называемых петрографических составляющих. Один из них – витринит является как бы «носителем» спекающей способности, но не всякий, а только определенной степени метаморфизма. Сегодня к пластометрическим показателям прибавился еще один важный классификационный показатель – величина показателя отражения витринита, заключенного в аншлифе брикета приготовленного из средней пробы того или иного коксующегося угля.

Средняя проба угля измельчается до крупности требуемой для проведения технических анализов и из нее приготовляется аншлиф из пробы пропитанной шеллаком и отшлифованной. На специальной оптической установке определяется в процентах коэффициент отражения света от входящих в поверхность включений витринита, и это дает представление о возрасте угля, его коксующих и спекающих возможностях.

Например, для хороших коксовых и жирных углей такой показатель составляет 1 – 1,26%. Метод гостирован и входит в как классификационный в систему международной классификации углей.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *