Для чего в пластинчатых плавких вставках делаются суженные места
§94. Основы работы плавких предохранителей
Плавкие предохранители широко применяют в электротехнических установках для защиты электрооборудования от токов перегрузки и коротких замыканий. Это аппараты однократного действия, требующие замены плавкого элемента после каждого срабатывания. При токах, несущественно превышающих номинальное значение, нагрев вставки имеет установившийся характер, при котором все выделяемое в ней тепло отдается в окружающую среду. При этом, кроме вставки, приблизительно до этой же температуры нагреваются все элементы предохранителя. Температура нагрева при этом такова, что плавкая вставка не расплавляется.
В аварийном режиме при быстром и значительном увеличении тока, проходящего через плавкий элемент, последний плавится, разрывая электрическую цепь.
Плавление вставки и разрыв тока должны произойти за возможно более короткое время и при небольших кратностях аварийного тока относительно номинального значения. Резкое сокращение времени плавления достигается применением специальной формы плавкой вставки либо использованием металлургического эффекта.
Плавкую вставку выполняют в виде пластины с вырезами, уменьшающими площадь ее сечения (рис. 319) на отдельных участках. На этих суженных перешейках выделяется больше тепла, чем на широких частях, из-за повышения сопротивления. В нормальном режиме работы избыточное тепло вследствие теплопроводности материала вставки успевает распространиться к более широким частям и вся вставка имеет практически одну температуру. При перегрузках нагрев суженных участков идет быстрее и тепло не успевает отводиться к широким участкам. В результате температура перешейков быстро достигает значения температуры плавления, что приводит к разрыву цепи.
Быстродействующие плавкие предохранители имеют несколько перешейков, чередующихся с широкими частями, а вставка состоит из нескольких лент фольги, включенных параллельно. При коротких замыканиях нагрев перешейков происходит настолько интенсивно, что практически отводом тепла от них можно пренебречь, и одновременно перегорают все или несколько перешейков.
Рис. 319. Формы плавких вставок
Рис. 320. Время-токовая характеристика плавкого предохранителя (а) и кривая изменения тока при отключении аварийного тока плавким предохранителем (б)
Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять некоторые тугоплавкие металлы (медь, серебро и др.). Указанное явление используется в предохранителях на небольшие токи со вставками из ряда параллельных проволок, на которые напаяны небольшие оловянные шарики. При токах перегрузки, когда температура проволок вставки достигает температуры плавления олова, шарик расплавляется и растворяет часть металла, на который он напаян. Вставка перегорает в этом месте, причем температура всей вставки оказывается намного ниже температуры плавления металла, из которого она выполнена. В нормальном режиме шарик практически не влияет на температуру нагрева вставки. Такой способ применяют при тонких проводниках вставки и малых диаметрах шариков.
При возрастании диаметра вставки влияние металлургического эффекта резко снижается.
Работа предохранителя характеризуется его время-токовой характеристикой и уровнем ограничения тока iогр.
Время-токовая характеристика (рис. 320,а) показывает, за какое время отключит ток плавкий предохранитель при данной кратности проходящего через него тока по отношению к номинальному значению, т. е. характеризует его быстродействие в определенных условиях. Так, при номинальных значениях тока (I/Iном = 1) предохранитель не срабатывает, а при больших кратностях тока К/Kном отключает цепь за малое время tоткл.
Действие плавкого предохранителя поясняется рис. 320,б. Ток в защищаемой цепи ограничивается значительно меньшим значением ioгр, чем без предохранителя (показано на рисунке штриховой линией).
Отключение аварийного тока плавким предохранителем характеризуется двумя зонами: плавления и гашения дуги. Зона плавления представляет собой отрезок времени от начала нарастания аварийного тока до образования электрической дуги (интервал времени 0 — tдг). Образование электрической дуги определяет начало ограничения аварийного тока.
Предохранители выбирают в зависимости от напряжения установки, где они должны эксплуатироваться. Номинальный ток плавкой вставки выбирают по наибольшему току нагрузки с учетом перегрузок, которые допускает предохранитель без плавления.
Большая Энциклопедия Нефти и Газа
Пластинчатая вставка
Пластинчатые вставки изготовляют в заводских условиях. В ремонтном цехе необходимо иметь комплект калиброванных пластин, на которых должен быть указан их номинальный ток. [1]
Пластинчатые вставки изготовляют в заводских условиях. [3]
Одинаковы ли температуры вставки и защищаемых проводов. С какой целью в пластинчатых вставках ( рис. 3 а) сделаны вырезы. Как доказать, что выводы исправного предохранителя, хотя они сильно нагреты, вставку не нагревают, а охлаждают. На рис. 3 а цветными волнистыми линиями показаны два случая перегорания вставки. Как, зная, в каком месте вставка перегорела, определить причину перегорания. Как надо понимать слова надлежащим образом, набранные в условии упражнения наклонным шрифтом. Из примерной характеристики плавкого предохранителя ( рис. 3 д) явствует, что чем больше кратность тока / по отношению к номинальному току номтем вставка перегорает быстрее. Чем объясняется эта закономерность. Благодаря чему при номинальном токе предохранитель не перегорает. [8]
Плавкие вставки применяют в виде проволок или пластинок. Пластинки имеют несколько узких перешейков, которые уменьшают время отключения и увеличивают устойчивость работы предохранителя. Пластинчатые вставки легко изготовить из листового металла путем штамповки. [10]
Плавкие вставки выполняют в виде проволок или пластинок. Пластинки имеют несколько узких перешейков, которые уменьшают время отключения и увеличивают устойчивость работы предохранителя. Пластинчатые вставки легко изготовить из листового металла путем штамповки. [12]
Головка закреплена на текстолитовой панели 39, в центре которой запрессовано сопло 40 для выпуска сжатого воздуха. Направляющие гильзы 43 входят в гнезда вместе с пружинами 42 для облегчения их хода и устранения перекоса. К нижней части шин примыкают скобки ( 44, см. рис. 33), которые имеют прорезь в основании. Спиральные пружины 42 перемещают скобки относительно шин в горизонтальной плоскости и максимально удаляют их от воздушного сопла. С внутренней стороны на скобки ставятся съемные пластинчатые вставки 46, концы которых изогнуты по-радиусу для придания проволоке нужного направления. [15]
Плавкие предохранители — их назначение, типы и виды, устройство и принцип действия
Плавкий предохранитель — элемент электросети, выполняющий защитную функцию. В отличие от автоматического выключателя после каждого срабатывания он нуждается в замене размыкающей цепь детали. Плавкая вставка, которая сгорает при превышении допустимого значения номинального тока, должна быть выбрана с учетом нагрузки на сеть.
Принцип работы и назначение плавких предохранителей
Внутри вставки предохранителя находится проводник из чистого металла (меди, цинка и пр.) или сплава (стали). Защита цепей основана на физическом свойстве металлов нагреваться при прохождении тока. Многие сплавы обладают и положительным коэффициентом термического сопротивления. Его эффект заключается в следующем:
На этом свойстве основана расплавление тонкой проволочины, помещенной в электрический предохранитель. В зависимости от сферы применения форма и сечение проводника могут быть разными: от тонкой проволоки в бытовых и автомобильных приборах до толстых пластин, рассчитанных на силу тока в несколько тысяч ампер (А).
Компактная деталь защищает электрическую цепь от перегрузки и короткого замыкания. При превышении допустимого для сети (т. е. номинального) тока происходит разрушение вставки и разрыв цепи. Восстановить её работу можно только после замены элемента. Когда есть дефект в подключенном оборудовании, предохранители сгорают сразу после включения неисправного прибора, позволяя сохранить целостность прибора и указать на наличие проблемы. Если в сети произошло короткое замыкание, защитное устройство срабатывает так же.
Условное графическое обозначение на схеме
Согласно Единой системе конструкторской документации России, на графических схемах электроцепей плавкие предохранители обозначают прямоугольником, внутри которого проходит прямая линия. Её концы соединяются с 2 частями цепи до и после защитного устройства.
В документации к приборам импортного производства можно встретить и другие обозначения:
Виды и типы плавких предохранителей
Для применения в электроцепях используют разные типы и разновидности ПП. Выпускаемые в России изделия отличаются по типу конструкции:
Понятие наполненности связано с наличием внутри отдельных видов вставок вещества, гасящего электродугу, возникающую в момент перегорания проводника. Цепь будет разомкнута только после её исчезновения. Поэтому в колбах, наполненных ПП, находится кварцевый песок. Ненаполненные способны выделять газы, гасящие дугу. Это происходит при нагреве материала корпуса вставки.
Кроме типов, различают виды ПП:
В зависимости от общей нагрузки на сеть устанавливают разные виды ПП — более мощные ставят в специальных трансформаторных будках, они могут выдерживать ток, обеспечивающий потребности жилого массива иди предприятия. Маломощные монтируют в счетчиках: они защищают отдельные квартиры. В старых бытовых приборах тоже может быть установлен ПП (слаботочный), но современная техника содержит эти элементы редко.
Выбор плавкой вставки предохранителя
Выбор предохранителей производят с учетом их номиналов, времятоковой характеристики и общей нагрузки на сеть (суммарной мощности всех работающих элементов). Номинальным током ПП называют тот, который плавкая вставка сможет выдержать до разрушения. Эта величина указана на корпусе предохранителя (например, маркировка 63 А для пробковых бытовых предохранителей).
Предохранители плавкие. Назначение и принцип работы плавких предохранителей.
Предохранитель — коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.
В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную.) Эта операция производится вручную либо автоматически. В последнем случае заменяется весь предохранитель.
Рис. 5-1. Времятоковая характеристика предохранителей серии ПН-2
Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили очень широкое их применение. Предохранители низкого напряжения изготовляются на токи от миллиампер до тысяч ампер и на напряжение до 660 В, а предохранители высокого напряжения — до 35 кВ и выше.
Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако несмотря на это, все они имеют следующие основные [элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.
Важнейшей характеристикой предохранителя является зависимость времени перегорания плавкой вставки от тока времятоковая характеристика (рис. 5-1).
Предохранитель работает в двух резко отличных режимах: в нормальных условиях ив условиях перегрузок и коротких замыканий. В первом случае нагрев вставки имеет характер установившегося процесса, при котором вся выделяемая в ней теплота отдается в окружающую среду. При этом кроме вставки нагреваются до установившейся температуры и все другие детали предохранителя. Эта температура не должна превышать допустимых значений. Ток, на который рассчитана плавкая вставка для длительной работы, называют номинальным током плавкой вставки 1ном.. Он может быть отличным от номинального тока самого предохранителя.
Обычно в один и тот же предохранитель можно вставлять плавкие вставки на различные номинальные токи. Номинальный ток предохранителя, указанный на нем, равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя.
При токах, превышающих условный ток плавления, предохранитель должен сработать в соответствии с времятоковой характеристикой. С ростом тока степень ускорения перегорания плавкой вставки должна возрастать намного быстрее тока Для получения такой характеристики придают вставке специальную форму или используют металлургический эффект.
Вставку выполняют в виде пластинки с вырезами (рис. 5-2, а), уменьшающими ее сечение на отдельных участках. На этих суженных участках выделяется больше теплоты, чем на широких. При номинальном токе избыточная теплота вследствие теплопроводности материала вставки успевает распространиться к более широким частям, и вся вставка имеет практически одну температуру. При перегрузках (I≈I∞max) нагрев суженных участков идет быстрее; так как только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис. 5-2,б). При коротком замыкании (I>>I∞) нагрев суженных участков идет настолько интенсивно, что практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или в нескольких суженных местах (рис. 5-2, в).
Рис. 5-2. Распределение температур (а) и места перегорания фигурных плавких вставок при перегрузках (б) и при коротких замыканиях (в).
Во многих конструкциях плавкой вставке 1 придается такая форма (рис 5-3 а) при которой электродинамические силы F, возникающие при токах короткого замыкания, разрывают вставку еще до того, как она успевает расплавиться На рисунке место разрыва обозначено кружком. Этот участок выполняется меньшего сечения. При токах перегрузки электродинамические силы малы и плавкая вставка плавится в суженном месте. В конструкции, показанной на рис. 5-3,б ускорение отключения цепи при перегрузках и коротких замыканиях достигается за счет пружины 2, разрывающей вставку; при размягчении-металле на суженных участках до того, как происходит плавление этих участков.
Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять некоторые тугоплавкие металлы (медь, серебро и др.). Полученный таким образом раствор обладает иными характеристиками, чем исходные материалы (например большим электрическим сопротивлением и пониженной температурой плавления) Указанное явление используется в предохранителях с вставками из ряда параллельных проволок.
Рис. 5-3. Примеры форм плавких вставок с ускоренным их разрывом.
Для ускорения плавления вставки при перегрузках и снижения общей температуры всей вставки при ее плавлении на проволоки напаиваются небольшие оловянные щарики. При токах перегрузки, когда температура вставки достигает температуры плавления олова, шарик, расплавляется и растворяет, часть металла, на котором он напаян. Происходит местное увеличение сопротивления вставки и снижение температуры плавления-металла, в этом месте. Вставка перегорает в том месте, где был наплавлен шарик. При этом температура всей вставки оказывается намного ниже температуры плавления металла, из которого она выполнена. В номинальном режиме шарик практически не влияет на температуру нагрева вставки.
Этот способ получения требуемой времятоковой характеристики может применяться при тонких вставках, например при диаметре шарика 1 мм для проволок диаметром 0,3 мм и диаметре шарика до 2 мм при более толстых проволоках. При возрастании диаметра вставки влияние металлургического эффекта резко снижается и практически не сказывается.
Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно быть осуществлено в возможно короткое время. Время гашения дуги зависит от конструкции предохранителя и принятого способа гашения. Наибольший ток, который плавкий предохранитель может отключить без каких-либо повреждений или деформаций, препятствующих его дальнейшей исправной работе после смены плавкой вставки, называют предельным током отключения предохранителя.
В современных предохранителях с закрытыми патронами без наполнителя дуга гасится за счет высокого давления, возникающего в патроне вследствие появления дуги, а при наличии наполнителя — за счет интенсивного охлаждения дуги наполнителем и высокого давления, вызываемого дугой в узких каналах наполнителя. При этом гашение дуги происходит в ограниченном объеме патрона предохранителя. За пределы патрона не выбрасываются ни пламя дуги, ни ионизированные газы.
Применение параллельных плавких вставок (при больших токах) позволяет при том же суммарном поперечном сечении их получить большую поверхность охлаждения, тем самым улучшить условия охлаждения вставок и лучше использовать объем наполнителя (в предохранителях с наполнителем).
Плавкая вставка. Устройство и принцип работы.
Плавкая вставка. Устройство и принцип работы
ПЛАВКАЯ ВСТАВКА. ОПРЕДЕЛЕНИЕ.
Если говорить нормативным языком, то согласно пункту 2.1.1 ГОСТ Р МЭК 60269-1-2010 имеется следующее определение:
“Плавкий предохранитель (плавкая вставка) – это устройство, которое за счет расплавления одного или нескольких своих элементов, имеющих определенную конструкцию и размеры, размыкает цепь, в которую оно включено, отключая ток, превышающий заданное значение в течение определенного времени.”
От себя бы хотел добавить, плавкий предохранитель – это защитное устройство, конструктивно состоящий из плавкой вставки и держателя плавкой вставки (или предохранительного разъединителя).
УСТРОЙСТВО ПЛАВКОЙ ВСТАВКИ
Все плавкие предохранители, изготавливаемые в настоящий момент, состоят из следующих конструктивных элементов:
Корпусы плавких вставок с небольшими номинальными токами выполняются из стекла. Как правило речь идет о привычных нам цилидрических предохранителях.
Материалом корпуса силовых плавких вставок как правило является фарфор, стеатит или корундо-муллитовая керамика.
На корпусе указываются характеристики плавкой вставки, такие как номинальный ток, напряжение, характеристика, габарит и отключающая способность.
Корпусы плавких вставок с небольшими номинальными токами выполняются из стекла. Как правило речь идет о привычных нам цилидрических предохранителях.
Материалом корпуса силовых плавких вставок как правило является фарфор, стеатит или корундо-муллитовая керамика.
На корпусе указываются характеристики плавкой вставки, такие как номинальный ток, напряжение, характеристика, габарит и отключающая способность.
ПРИНЦИП РАБОТЫ ПЛАВКОЙ ВСТАВКИ
Как мы уже говорили ранее, защитным компонентом в составе плавкой вставки является плавкий элемент, находящийся в дугогасящем корпусе, например.
Плавкий элементы выполняется в виде тонкой проволоки переменного сечения или пластины с вырезами. В случае пластины, вырезы необходимы для уменьшения площади проводящего ток сечения элемента.
В номинальном режиме работы избыточные тепловыделения из зауженных мест равномерно рассеиваются по всей площади плавкого элемента. За счет этого не происходит плавление. Но в случае перегрузки или короткого замыкания нагрев происходит настолько интенсивно, что избыточная теплота не успевает перераспределиться и плавкий элемент расплавляется в суженных местах.
В быстродействующих плавких вставках, защитный элемент имеет более сложную конструкцию. За счет специального конструктива разрыв сети происходит за счет действия электродинамических сил. Для ускорения срабатывания также может применяться натянутая пружина и “металлургический эффект”.
Что такое металлургический эффект?
Металлургический эффект — явление в металлах, заключающееся в способности растворения некоторых относительно тугоплавких металлов (меди, серебра и др.) во многих расплавленных легкоплавких металлах (олове, свинце и др.), при этом получающийся сплав обладает иными физическими характеристиками, чем исходные компоненты. (источник — википедия)
В случае применения металлургического эффекта плавкий элемент выполняется из нескольких проволок, располагаемых параллельно. Проволоки изготавливаются из тугоплавкого металла, например, из меди. На проволоки наплавляются шарики из легкоплавкого металла, например, из олова.
В номинальных режимах работы, ток протекает через плавкий элемент, не вызывая расплавления шариков. При перегрузке и коротком замыкании при целевом значении тока шарик расплавляется, растворяя медь. Этот процесс приводит к местному увеличению сопротивления и, соответственно, увеличению температуры проводника в месте расположения шарика. Таким образом, плавкий элемент в этих местах разрывается гораздо раньше, чем ток короткого замыкания достигнет установившегося значения (в среднем в 2-5 раз меньше). Данный факт значительно нивелирует губительное для электрического (особенно, полупроводникового) оборудования действие электродинамических сил.