Для чего вычисляют спектр сигнала
Спектральный анализ сигналов
Не так давно товарищ Makeman описывал, как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.
Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.
Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.
Будем решать данную задачу на Java.
Матчасть
Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ». Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя — ряд Фурье.
В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.
Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.
Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье.
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром.
Небольшое отступление: спектр преобразования Фурье — в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра — это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы — соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр.
Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.
Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.
Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию — спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье — дискретное преобразование Фурье (ДПФ).
Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.
Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.
Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.
Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.
Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.
Рис. 2. Амплитудный спектр синусоидального сигнала.
Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции — F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).
На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:
Рис. 3. Эффект растекания спектра.
Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.
Оконная функция | Уровень боковых лепестков (дБ) |
Окно Дирихле (прямоугольное окно) | -13 дБ |
Окно Ханна | -31.5 дБ |
Окно Хэмминга | -42 дБ |
Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.
Рис. 4. Отдельные спектры гармоник.
Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.
Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.
Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.
Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование.
Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w0 – wгет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.
Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.
Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.
Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:
Автоматизируй это
Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:
1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.
Алгоритм не сложный, и единственный возникающий вопрос — откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.
Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат — количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:
Рис. 7. Функция распределения гармоник.
Теперь построим еще и функцию — плотность распределения. Т.е., значения конечных разностей от функции распределения.
Рис. 8. Плотность функции распределения гармоник.
Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.
Практическая часть
Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на GitHub.
Единственной сложностью стала генерация PDF отчёта по результатам анализа: PDFbox ну никак не хотел работать с кириллицей. К слову, не хочет и сейчас.
В проекте использовались библиотеки:
JFreeChart – отображение графиков
PDFBox – построение отчёта
JLatexMath – рендер Latex формул
В итоге, получилась довольно массивная программа (13.6 мегабайт), удобно реализующая поставленную задачу.
Есть возможность как вырезать гармоники вручную, так и доверить эту задачу алгоритму.
Для чего вычисляют спектр сигнала
Спектроанализатор – прибор для измерения и отображения спектра сигнала – распределения энергии сигнала по частотам. В этой статье рассматриваются основные виды анализаторов спектра и иллюстрируется их применение для редактирования и реставрации звука. Особое внимание уделяется современным анализаторам, основанным на FFT – быстром преобразовании Фурье.
Зачем анализировать спектр?
Традиционно в цифровой звукозаписи аудиодорожка представляется в виде осциллограммы, отображающей форму звуковой волны (waveform), то есть зависимость амплитуды звука от времени. Такое представление достаточно наглядно для опытного звукорежиссёра: осциллограмма позволяет увидеть основные события в звуке, такие как изменения громкости, паузы между частями произведения и зачастую даже отдельные ноты в сольной записи инструмента. Но одновременное звучание нескольких инструментов на осциллограмме «смешивается» и визуальный анализ сигнала становится затруднительным. Тем не менее, наше ухо без труда различает отдельные инструменты в небольшом ансамбле. Как же это происходит?
Когда сложное звуковое колебание попадает на барабанную перепонку уха, оно с помощью серии слуховых косточек передаётся на орган, называемый улиткой. Улитка представляет собой закрученную в спираль эластичную трубочку. Толщина и жёсткость улитки плавно меняются от края к центру спирали. Когда сложное колебание поступает на край улитки, это вызывает ответные колебания разных частей улитки. При этом резонансная частота у каждой части улитки своя. Таким образом улитка раскладывает сложное звуковое колебание на отдельные частотные составляющие. К каждой части улитки подходят отдельные группы слуховых нервов, передающие информацию о колебаниях улитки в головной мозг (более подробно о слуховом восприятии можно прочитать в статье «Основы психоакустики» И. Алдошиной в журнале «Звукорежиссер» №6, 1999). В результате в мозг поступает информация о звуке, уже разложенная по частотам, и человек легко отличает высокие звуки от низких. Кроме того, как мы вскоре увидим, разложение звука на частоты помогает различить отдельные инструменты в полифонической записи, что значительно расширяет возможности редактирования.
Полосовые спектроанализаторы
Первые звуковые анализаторы спектра разделяли сигнал на частотные полосы с помощью набора аналоговых фильтров. Дисплей такого анализатора (рис. 1) показывает уровень сигнала во множестве частотных полос, соответствующих фильтрам.
На рис. 2 приведён пример частотных характеристик полосовых фильтров в анализаторе, удовлетворяющем стандарту ГОСТ 17168-82. Такой анализатор называется третьоктавным, так как в каждой октаве частотного диапазона имеется три полосы. Видно, что частотные характеристики полосовых фильтров перекрываются; их крутизна зависит от порядка используемых фильтров.
Важным свойством спектроанализатора является баллистика – инерционность измерителей уровня в частотных полосах. Она может регулироваться заданием скорости нарастания (атаки) и спада уровня. Типичное время атаки и спада в таком анализаторе – порядка 200 и 1500 мс.
Полосовые спектроанализаторы часто применяются для настройки АЧХ (амплитудно-частотной характеристики) акустических систем на концертных площадках. Если на вход такому анализатору подать розовый шум (имеющий одинаковую мощность в каждой октаве), то дисплей покажет горизонтальную линию, с возможной поправкой на вариацию шума во времени. Если розовый шум, проходя через звукоусилительную систему зала, исказился, то изменения его спектра будут видны на анализаторе. При этом анализатор, как и наше ухо, будет малочувствителен к узким провалам АЧХ (менее 1/3 октавы).
Преобразование Фурье
Преобразование Фурье – это математический аппарат для разложения сигналов на синусоидальные колебания. Например, если сигнал x(t) непрерывный и бесконечный по времени, то его можно представить в виде интеграла Фурье:
Интеграл Фурье собирает сигнал x(t) из бесконечного множества синусоидальных составляющих всевозможных частот ω, имеющих амплитуды Xω и фазы φω.
На практике нас больше интересует анализ конечных по времени звуков. Поскольку музыка не является статичным сигналом, её спектр меняется во времени. Поэтому при спектральном анализе нас обычно интересуют отдельные короткие фрагменты сигнала. Для анализа таких фрагментов цифрового аудиосигнала существует дискретное преобразование Фурье:
Здесь N отсчётов дискретного сигнала x(n) на интервале времени от 0 до N–1 синтезируются как сумма конечного числа синусоидальных колебаний с амплитудами Xk и фазами φk. Частоты этих синусоид равны kF/N, где F – частота дискретизации сигнала, а N – число отсчётов исходного сигнала x(n) на анализируемом интервале. Набор коэффициентов Xk называется амплитудным спектром сигнала. Как видно из формулы, частоты синусоид, на которые раскладывается сигнал, равномерно распределены от 0 (постоянная составляющая) до F/2 – максимально возможной частоты в цифровом сигнале. Такое линейное расположение частот отличается от распределения полос третьоктавного анализатора.
FFT-анализаторы
FFT (fast Fourier transform) – алгоритм быстрого вычисления дискретного преобразования Фурье. Благодаря ему стало возможным анализировать спектр звуковых сигналов в реальном времени.
Рассмотрим работу типичного FFT-анализатора. На вход ему поступает цифровой аудиосигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), на которых будет вычисляться спектр, и считает FFT в каждом окне для получения амплитудного спектра Xk. Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты (рис. 3). Аналогично полосовым анализаторам, обычно используется логарифмический масштаб по осям частот и амплитуд. Но из-за линейного расположения полос FFT по частоте спектр может выглядеть недостаточно детальным на нижних частотах или излишне осциллирующим на верхних частотах.
Если рассматривать FFT как набор фильтров, то, в отличие от полосовых фильтров третьоктавного анализатора, фильтры FFT будут иметь одинаковую ширину в герцах, а не в октавах. Поэтому розовый шум на FFT-анализаторе будет уже не горизонтальной линией, а наклонной, со спадом 3 дБ/окт. Горизонтальной линией на FFT-анализаторе будет белый шум – он содержит равную энергию в равных линейных частотных интервалах.
Параметр N – число анализируемых отсчётов сигнала – имеет решающее значение для вида спектра. Чем больше N, тем плотнее сетка частот, по которым FFT раскладывает сигнал, и тем больше деталей по частоте видно на спектре. Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала. Если сигнал в пределах окна FFT меняет свои свойства, то спектр будет отображать некоторую усреднённую информацию о сигнале со всего интервала окна.
Когда нужно проанализировать быстрые изменения в сигнале, длину окна N выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени. Этот факт называется соотношением неопределённостей.
Весовые окна
Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть «идеально»: единственный острый пик укажет на частоту и амплитуду тона (рис. 4, белый график).
Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT «соберёт» тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте (рис. 4, зелёный график). Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые звуки на соседних частотах. Можно также заметить, что амплитуда максимума зелёного графика ниже реальной амплитуды анализируемого тона. Это связано с тем, что мощность анализируемого тона равна сумме мощностей коэффициентов спектра, из которых этот тон составлен.
(наведите мышь для выбора изображения)
Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции, похожие на гауссиан, спадающие к краям интервала. Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения. Если рассматривать FFT как набор полосовых фильтров, то весовые окна регулируют взаимное проникновение частотных полос.
Простейшее окно – прямоугольное: это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна. Одно из популярных окон – окно Хэмминга. Оно уменьшает уровень размытия спектра примерно на 40 дБ относительно главного пика.
Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра («боковых лепестков»). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки. Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.
Другой популярный выбор – окно Хана. Оно подавляет максимальный боковой лепесток слабее, чем окно Хэмминга, но зато остальные боковые лепестки быстрее спадают при удалении от главного пика. Окно Блэкмана обладает более сильным подавлением боковых лепестков, чем окно Хана.
Для большинства задач не очень важно, какой именно вид весового окна использовать. Главное, чтобы оно было. Популярный выбор – Хан или Блэкман. Использование весового окна уменьшает зависимость формы спектра от конкретной частоты сигнала и от её совпадения с сеткой частот FFT.
Рисунок 4 сделан для синусоид, однако, исходя из него, нетрудно представить, как будет выглядеть спектр реальных звуковых сигналов. Каждый пик в спектре будет иметь некоторую размытую форму, в зависимости от своей частоты и выбранного весового окна.
Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.
Спектрограмма
Часто возникает необходимость проследить, как спектр сигнала меняется во времени. FFT-анализаторы помогают сделать это в реальном времени при воспроизведении сигнала. Однако в ряде случаев оказывается удобна визуализация изменения спектра во всём звуковом отрывке сразу. Такое представление сигнала называется спектрограммой. Для её построения применяется оконное преобразование Фурье: спектр вычисляется от последовательных окон сигнала (рис. 5), и каждый из этих спектров образует столбец в спектрограмме.
По горизонтальной оси спектрограммы откладывается время, по вертикальной – частота, а амплитуда отображается яркостью или цветом. На спектрограмме гитарной ноты на рис. 6 видно развитие звучания: оно начинается с резкой атаки и продолжается в виде гармоник, кратных по частоте основному тону 440 Гц. Видно, что верхние гармоники имеют меньшую амплитуду и затухают быстрее, чем нижние. Также на спектрограмме прослеживается шум записи – равномерный фон тёмно-синего цвета. Справа показана шкала соответствия цветов и уровней сигнала (в децибелах ниже нуля).
(наведите мышь для выбора изображения)
Если менять размер окна FFT, становится хорошо видно, как меняется частотное и временное разрешение спектрограммы. При увеличении окна гармоники становятся тоньше, и их частота может быть определена более точно. Однако размывается во времени момент атаки (в левой части спектрограммы). При уменьшении размера окна наблюдается обратный эффект.
Особенно полезна спектрограмма при анализе быстро меняющихся сигналов. На рис. 7 показана спектрограмма вокального пассажа с вибрато. По ней легко определить такие характеристики голоса, как частота и глубина вибрато, его форма и ровность, наличие певческой форманты. По изменению высоты основного тона и гармоник прослеживается исполняемая мелодия.
(наведите мышь для выбора изображения)
Применения спектрограммы
Современные средства реставрации звука, такие как программа iZotope RX, активно используют спектрограмму для редактирования отдельных частотно-временных областей в сигнале. С помощью этой техники можно найти и подавить такие нежелательные призвуки, как звонок мобильного телефона во время важной записи, скрип стула пианиста, кашель в зрительном зале и т.п.
Проиллюстрируем использование спектрограммы для удаления свиста поклонников из концертной записи.
На рис. 8 свист легко находится: это светлая кривая линия в районе 3 кГц. Если бы частота свиста была постоянной, то его можно было бы подавить с помощью режекторного фильтра. Однако в нашем случае частота меняется. Для выделения свиста на спектрограмме удобно воспользоваться инструментом «волшебная палочка» из программы iZotope RX II. Одно нажатие приводит к выделению основного тона свиста, повторное нажатие выделяет гармоники. После этого свист можно удалить, просто нажав на клавишу Del. Однако более аккуратный способ – воспользоваться модулем Spectral Repair: это позволит избежать «дыр» в спектре после удаления свиста. После применения этого модуля в режиме ослабления с вертикальной интерполяцией (Attenuate vertically) свист практически полностью исчезает из записи: как визуально, так и на слух.
Еще одно полезное применение спектрограммы – анализ присутствия в записи следов компрессии MP3 или других кодеков с потерями. У большинства записей оригинального (несжатого) качества частотный диапазон простирается до 20 кГц и выше; при этом энергия сигнала плавно спадает с ростом частоты (как на рис. 6, 7). В результате психоакустической компрессии верхние частоты сигнала квантуются сильнее нижних, и верхняя граница спектра сигнала обнуляется (как на рис. 8). При этом частота среза зависит от содержания кодируемого сигнала и от битрейта кодера. Ясно, что кодер стремится обнулять только те частоты в сигнале, которые в данный момент не слышны (замаскированы). Поэтому частота среза, как правило, меняется во времени, что образует на спектрограмме характерную «бахрому» с островками энергии на тёмном фоне.
Спектрограмма часто позволяет найти в записи дефекты, которые неочевидны при прослушивании, но могут сказаться при последующей обработке. Например, паразитная наводка от ЭЛТ-видеомонитора на частоте 15–16 кГц может ускользнуть от уха пожилого звукорежиссёра. Однако спектрограмма ясно покажет её в виде горизонтальной линии (рис. 9) и позволит уточнить частоту для настройки режекторного фильтра.
Аналогичная ситуация иногда возникает и с низкочастотными помехами, такими как задувание ветра в микрофон или постоянная составляющая (смещение по постоянному току, DC offset). Они могут располагаться на инфранизких частотах и не обнаруживать себя без помощи спектроанализатора или осциллографа.
Заключение
Среди опытных звукорежиссёров старой школы распространено мнение, что анализировать и редактировать сигналы следует исключительно на слух, не полагаясь на индикаторы и анализаторы. Разумеется, анализаторы – не панацея в случае отсутствия слуха. Вряд ли кто-то серьёзно воспринимает идею сведения композиции «по приборам».
Не отрицая важности критического прослушивания звука на каждой стадии редактирования, мы всё же предлагаем использовать анализаторы спектра в тех задачах, где это может привести к более точным результатам. Конечно, можно определить на слух паразитный тон на частоте 15 кГц и подобрать режекторный фильтр подходящей добротности для его удаления. Но намного проще увидеть этот тон на спектроанализаторе и сразу более точно оценить его свойства: «плывёт» ли частота, есть ли боковые пики. В конечном счёте, это позволит более аккуратно удалить помеху. Аналогичная ситуация и со многими другими задачами редактирования, особенно – в реставрации звука.
Спектр и спектрограмма – способы представления звука, более близкие к слуховому восприятию, нежели осциллограмма. Надеюсь, что эта статья откроет новые возможности в анализе и редактировании звука для тех, кто ранее с этими представлениями не работал.