Для чего звуковые резонаторы
Акустические резонаторы Гельмгольца
Явление резонанса оказывает влияние на все колебательные процессы — механические, электрические, звуковые. Акустика — одна из таких прикладных дисциплин, где влияние резонанса особенно ощутимо. С нежелательными резонансами приходиться бороться, полезные нужно использовать. Динамические головки, используемые в системах воспроизведения звука — пример механической колебательной системы, работающей с заходом в область резонанса.
Кроме механических колебательных систем, в электроакустических преобразователях широко используются акустические колебательные системы, в которых отдельные элементы представляют собой газообразную среду. Акустические колебательные системы используются в виде полостей, каналов, объемных резонаторов, которые в сочетании могут образовывать сложные устройства, по своему действию аналогичные резонансным контурам, фильтрам и т.д. С их помощью можно выделять или подавлять определенные участки звукового диапазона частот.
Поведение механических колебательных систем обычно рассматривают на примере грузика на пружинке. Эту же модель часто используют и при анализе работы акустических систем — удобно и наглядно.
Примером простейшей акустической колебательной системы является резонатор Гельмгольца. Он представляет собой сосуд сферической формы с открытой горловиной. Воздух в горловине является колеблющейся массой, а объем воздуха в сосуде играет роль упругого элемента.
Резонанс Гельмгольца — явление резонанса воздуха в полости, примером которого является гудение пустой бутылки от потока воздуха направленного перпендикулярно её горлышку. Резонатор Гельмгольца — медный сосуд сферической формы с открытой горловиной, изобретённый Гельмгольцем около 1850 года для анализа акустических сигналов, на основе наблюдаемых в нём явлений Гельмгольцем и Рэлеем разработана количественная теория резонанса данного типа.
Wikipedia
Разумеется, такое разделение справедливо лишь приближенно, так как некоторая часть воздуха в полости обладает инерционным сопротивлением. Однако при достаточно большой величине отношения площади отверстия к площади сечения полости точность такого приближения вполне удовлетворительна.
Основная часть кинетической энергии колебаний оказывается сосредоточенной в горле резонатора, где колебательная скорость частиц воздуха имеет наибольшую величину.
Примерный вид резонатора Гельмгольца
Строго говоря, резонатор представляет собой систему с распределенными параметрами. Однако если размеры резонатора малы по сравнению с длиной волны действующих на резонатор колебаний, то практически можно рассматривать такую систему, как систему с сосредоточенными параметрами. Собственная частота резонатора Гельмгольца равна:
Например, для сосуда объемом 1 л с горловиной длиной 1 см и сечением 1 см 2 частота резонанса составит примерно 170 Гц. Обратите внимание, что длина волны для этой частоты составляет около 2 м, что значительно больше характерных размеров резонатора. Следовательно, не может быть и речи о стоячей акустической волне в самом резонаторе. Действительно, в полости можно возбудить только волны, длина которых меньше характерного размера резонатора:
Для данного примера это частоты выше 3 кГц.
Другой вариант резонатора — органная труба. Стоячие волны в таком резонаторе возможны лишь для тех случаев, когда на длине трубы укладывается нечетное число четвертей длин волн. Соответственно, резонансные частоты будут равны:
Хотя резонансных частот несколько, однако, сильнее всех выражена первая мода колебаний. Этому случаю соответствует четвертьволновый резонатор длиной:
Для частоты настройки 27 Гц длина трубы составит примерно 3,1 м. Неудивительно, что церковные органы имеют колоссальные размеры. Однако пора от теории перейти к практике.
Как уже отмечалось в начале статьи, акустические резонаторы можно использовать для усиления или ослабления определенного диапазона звуковых частот.
Самый наглядный пример акустического «усилителя» — фазоинвертор акустической системы, представляющий собой все тот же резонатор Гельмгольца, возбуждаемый «изнутри».
Если резонатор Гельмгольца возбуждать снаружи, он становится режекторным (подавляющим) фильтром, поглощающим энергию внешних колебаний. Глубину режекции можно увеличить, увеличив потери в горле резонатора при помощи звукопоглощающего материала.
В акустических системах первой отечественной стереофонической радиолы «Симфония» в качестве низкодобротного двухчастотного режекторного фильтра использовался резонатор Гельмгольца. Он представлял собой отдельный объем в нижней части корпуса с двумя отверстиями диаметрами 23 и 31 мм в горизонтальной перегородке.
Частоты настройки составляли 50 и 100 Гц. Фильтр предназначался для частичного подавления 1-й и 2-й гармоник сетевой частоты лампового усилительного тракта, а также устранял неизбежный «горб» на АЧХ в области 60–80 Гц, характерный для обычных в то время высокодобротных динамиков (Q ts
Пример провала на АЧХ с участием резонатора Гельгольца
Кстати, и сегодня этот путь можно считать очень перспективным для использования высокодобротных динамических головок в корпусах небольшого объема. Это позволяет сохранить высокую чувствительность акустической системы и получить при этом гладкую АЧХ, что актуально именно для car audio. Методика расчета предельно проста.
Сначала рассчитываем или измеряем частоту резонанса головки в корпусе заданного объема, затем рассчитываем на эту частоту резонатор Гельмгольца. В конструкции современных акустических систем, однако, резонатор Гельмгольца используется крайне редко. Динамические головки низкой добротности и высокая мощность усилителей позволяют обойтись без этих ухищрений. Все же несколько примеров удалось найти.
Профессиональный сабвуфер DYNACORD Alpha B-3 использует запатентованную технологию Planar WaveguideTM — плоский волновод со встроенным резонатором Гельмгольца. Благодаря взаимодействию резонанса волновода и резонатора Гельмгольца получен высокий уровень звукового давления на низких частотах.
Аналогичную конструкцию имеет автомобильный сабвуфер Pioneer TS-WX30. При объеме корпуса всего 5 литров его чувствительность достигает 100 дБ, но, правда, Гельмгольц здесь ни при чем. В данном случае режекторный фильтр в основном предназначен для подавления струйных шумов фазоинвертора.
Автомобильный сабвуфер с резонатором Гельмгольца Pioneer TS-WX30
Резонатор Гельмгольца иногда используют при акустической обработке салонов автомобилей для подавления низкочастотных объемных резонансов салона. Однако данный конструктивный прием труднореализуем на практике ввиду существенных габаритов резонаторной батареи, проблем ее компоновки, уменьшения полезного объема багажного отделения и т.п.
С ростом частоты настройки габариты резонаторов существенно уменьшаются, поэтому в области средних частот они используются заметно чаще. Акустические резонаторы — «голосовики» использовали много столетий назад при строительстве соборов и театров. И сегодня четвертьволновые резонаторы, и резонаторы Гельмгольца успешно используются в качестве элементов акустических студий и концертных залов.
Немало примеров можно найти и других областях. Система впуска современного двигателя легкового автомобиля оборудуется устройствами шумопоглощения. Это или резонаторы Гельмгольца «в чистом виде», подключенные параллельно к участкам впускного трубопровода, или семейство горлышек, образованное отверстиями перфорации трубопровода и охваченное герметичным кожухом. Также используют четвертьволновые резонаторы в виде тупиковых трубчатых отростков с жестким донышком, подключаемых к участкам трубопровода.
В патенте Германии № 4033269 описан глушитель выхлопа ДВС с перестраиваемым резонатором Гельмгольца. Частота настройки такого режекторного фильтра изменяется в зависимости от оборотов двигателя специальной следящей системой. Кстати, череп, как и любая замкнутая полость с отверстием, тоже является резонатором Гельмгольца. По некоторым данным, резонансной областью для черепа являются частоты 20–25 Гц. Как известно, облучение человека звуковыми колебаниями частотой 25 Гц в течение 30 минут при определенной интенсивности источника вызывает эпилептический припадок…
C принципом работы резонатора Гельмгольца, вы можете ознакомится на познавательном видео:
Для чего звуковые резонаторы
Когда резонатор усиливает, а когда ослабляет звук?
Интеллигент с большим читательским стажем уже приведет пример вредных последствий резонанса: «Знаете, почему разрушился Египетский мост в Петербурге? Потому, что воинская часть, проходившая по нему, не сменила команды «в ногу». Произошла усиленная вибрация, и вот. «
Александр Грин, которого знают как автора романтических и приключенческих повествований, был не чужд и жанру сатиры.
Через несколько дней после описанного события в одной из столичных газет появилась его «Элегия», написанная в манере стихотворения Лермонтова «Когда волнуется желтеющая нива». Сатира Грина начиналась так:
Это едва ли не единственная стихотворная ода резонансу, хотя и порожденная главным образом политическими причинами.
Если к полости резонатора подвести трубку, другой конец которой приложить к уху, то можно убедиться в усиливающем действии резонатора. Такое устройство применялось для помощи людям с ослабленным слухом. Наборы резонаторов использовались в первых анализаторах звуковых спектров. Каждый из резонаторов был настроен на свою частоту и выделял в сложном звуковом спектре соответствующую спектральную составляющую.
Пещера с узким наружным входом тоже служит резонатором. Он усиливает звуки особенно низких частот; туристы и спелеологи знают, как сильно отдаются удары грома в подобных пещерах.
Итак, резонатор усиливает звук, это совершенно ясно, не правда ли? Однако, как бы это странно ни звучало для некоторых, резонатор прежде всего. поглощает, то есть ослабляет звук. Противоречие здесь кажущееся. Все дело в том, о каком параметре колебательного процесса вести речь.
Да, в полости резонатора усиливается в той или иной степени звуковое давление. Но при этом в нем всегда поглощается определенная звуковая энергия. В какой-то мере в этом смысле резонатор можно сравнить с электрическим трансформатором. Во вторичной обмотке повышающего трансформатора увеличивается электрическое напряжение по сравнению с напряжением в первичной обмотке. Но в то же время трансформатор, к сожалению, поглощает часть электрической энергии вследствие нагрева обмоток, вихревых токов в сердечнике и т. п.
Теперь возникает следующий вопрос: где разместить дополнительный звукопоглощающий элемент, увеличивающий потери в резонаторе? В районе горлышка резонатора колебательная скорость частиц среды наибольшая и, следовательно, наибольшими будут потери на трение. Здесь и помещают слой волокнистого материала или толстой ткани, который с успехом выполняет функцию поглотителя звука.
Такими или подобными системами резонансного поглощения можно оборудовать стены или потолки помещений. Вместо перфорированных панелей иногда устанавливают наборы вертикальных реек с зазором относительно друг друга. Получается так называемый щелевой резонансный поглотитель, которому можно придать очень красивый вид, соответствующий современным архитектурным тенденциям.
Известно, что для хорошего восприятия музыки и речи зал должен иметь ту или иную степень гулкости; акустики в этом случае говорят о «времени реверберации помещения». Время реверберации можно менять, устанавливая дополнительные звукопоглотители, в том числе резонансные.
Сам зал, собственно, это тоже резонатор. Но, в отличие от резонирующих сосудов, у него много собственных частот. Чаще требуется, как только что сказано, заглушать колебания на этих частотах, но иногда зал сам по себе оказывается заглушенным в той или иной области частот; для более полного звучания музыки, вокальной речи требуется выделить эти области частот. Встает вопрос о «поддерживаемом» резонансе зала. Такой поддерживаемый с помощью электроакустической аппаратуры резонанс осуществлен, например, в зале Ройял Фестиваль Холл в Лондоне.
В последнее время румынский ученый Грумезэску много занимался вопросами взаимодействия резонирующих систем со звуковым полем. Плодом работ Грумезэску явился прочитанный им на одном из последних конгрессов по акустике пространный доклад, название которого мы почти дословно повторили в заголовке этого раздела. Из доклада читатель может узнать еще и о других интересных примерах усиления и поглощения звука различными резонаторам.
Как петь громко? Голосовые резонаторы и вокальный резонанс.
Многие хотят узнать, в чем секрет громкого пения и как сделать голос звонким. Чтобы это понять, нужно разобраться, как устроен голос. Процесс пения довольно прост и логичен.
- мы выдыхаем воздух выдох проходит через голосовые связки связки начинают вибрировать от вибраций появляется волна звука звуковая волна поднимается по глотке вверх попадает в рот и носовые пазухи они отражат звук и усиливают его происходит резонанс голоса и вокал становится громким.
как резонирует голос:
Если хотя бы один пункт из этого процесса нарушается, вся система перестает работать. Например, вокалист слишком много выдыхает. От этого связки смыкаются не плотно, и звуковая волна получается слабой. Такой вокал звучит тихо и зажато, а человек считает, что не умеет петь. Хотя в большинстве случаев, у таких людей прекрасные вокальные данные —
они просто не знают, где допускают ошибку! Поэтому, если вы хотите петь громко, первым шагом — научитесь распределять воздух при пении. Чтобы связкам было комфортно смыкаться и создавать ровную волну звука. Вторым шагом — разберитесь, как работают резонаторы, ведь именно они усиливают голос, которые рождают связки.
Почему резонанс делает голос громче?
Голос попадает в резонаторы (полости) и звук отражается в них десятки раз. Из-за отражения в вокале возникает много высоких и средних частот. Именно к высоким частотам очень чувствителен наш слух. Это не значит, что вы начали петь громче. Просто в тембре голоса у вас появилось много «цепляющих» нот (усиленных средних и высоких частот). И такое изменение в тембре ухо воспринимает как повышение громкости.
Какие голосовые резонаторы существуют?
Посмотрим, какие резонаторы используются в вокальном искусстве. Ранее считалось, что основных резонаторов два — головной и грудной. Высокие звуки резонируют в голове и ее пустотах, выше голосовых связок. А низкие звуки резонируют в груди — трахее и бронхах, ниже голосовых связок.
В последние десятилетия проводится много исследований резонаторов голосового аппарата у человека. Появились научные доказательства, что в груди звук не резонирует, а лишь вибрирует. Так как звуковая волна, рожденная на связках, поднимается под давлением воздуха вверх. А не спускается вниз, в грудную клетку. В легких, трахее и бронхах мы чувствуем лишь отголоски резонирования. То же происходит и с «головным» резонатором.
Многие педагоги вокала советуют направлять звук в лобные пазухи на верхних нотах для лучшего резонирования. Однако, лоб и его пустоты не имеют прямого воздушного соединения с горлом. Значит, колебания воздуха и звука не могут напрямую туда попасть! При пении вокалист чувствует лишь вибрации в лицевых костях, зоне лба и в затылке, которые возникают от резонанса в глоточном и носовом резонаторах.
Какие резонаторы голосового аппарата есть:
Каких резонаторов в пении нет:
Резонирующие полости, которые мы перечислили, составляют вокальный тракт — ваш голосовой аппарат. Влияя на одну часть вокального тракта, вы управляете голосом целиком и лучше контролируете свое пение. Как научиться управлять резонированием звука при пении мы поговорим в следующей статье .
Как получить резонанс при пении?
Чтобы возник резонанс нужны три вещи (вспоминаем курс физики!):
Источник энергии, которая вызывает резонанс.
Движущееся тело, которое колеблется и создает резонанс.
Пустота, резонирующая полость.
Весь секрет громкого пения!
Не путайте голосовые регистры и резонаторы!
Начинающие вокалисты путают головной регистр и головной резонатор. Или грудной регистр и грудной резонатор. Это большая ошибка!
Аудиофилькина грамота: ликбез по акустическому оформлению
Предыдущая статья о закрытом ящике продемонстрировала, что у некоторых читателей возникают вопросы относительно отличий между различными типами акустического оформления. Люди задавались вопросом о том, что вообще такое закрытый ящик, в чем его отличие от фазоинверторного оформления и от прочих типов. Большинство участников опроса ответили, что при покупке АС в принципе не будут интересоваться акустическим оформлением.
Полагаю, будет не лишним сконцентрировать внимание читателей на основных сильных и слабых сторонах различных типов акустического оформления и провести небольшой ликбез на эту тему. Я не стану в этот раз касаться слишком редких и экзотических типов, но постараюсь сравнительно подробно описать достоинства и недостатки наиболее распространенных. Часть поста, посвященная ЗЯ — ответ на вопрос, заданный lair, которому было непонятно, почему «Аудиофилы и притязательные богачи избалованы более изощренными решениями, а средний класс не готов поступиться объемом небольших квартир».
Коротко о зависимости звука от корпуса АС
Акустическое оформление корпуса оказывает влияние главным образом на АЧХ, а также на некоторые другие параметры. В зависимости от расчетов и выбранного оформления, такое влияние может улучшать или ухудшать верность воспроизведения. Любое решение в акустике является своеобразным компромиссом между практичностью (и нередко эстетичностью формы) и инженерными решениями, которые стремятся повысить верность воспроизведения. Проблема верности воспроизведения упирается в законы физики её ограничивающие, акустическое оформление — это попытка инженеров уменьшить влияние факторов ухудшающих верность воспроизведения, при этом получить приемлемые для конечного пользователя эксплуатационные свойства.
Полагаю, большинству читателей известно, что без оформления динамики не будут звучать правильно — возникнет, т.н. акустическое короткое замыкание. Воспроизводимая динамиком волна давления с длиной, соизмеримой с размерами диффузора, компенсируется за счет разрежения воздуха с тыльной стороны диффузора.
Идеальная акустическая система — это бесконечная стена. Если не затрагивать область идеального, то путь от центра внешней стороны диффузора до его центра тыльной стороны диффузора должен быть больше половины максимальной длины излучаемой звуковой волны. Особенно много проблем здесь возникает с НЧ. Так, при 20 Гц (нижний порог восприятия) длина волны составляет немногим более 17 метров. Естественно, что АС в виде стены такого размера несколько великовата для коммерческой серии. По этой причине стен не строят, а предпочитают ящики, которые полностью не решают проблем, но способны в значительной степени их компенсировать.
Проблемы существуют не только с акустическим коротким замыканием, но также с другими свойствами АС. Например, любой динамик имеет резонансную частоту, ниже которой происходит крутой завал АЧХ, ок. 12 дБ на октаву. При работе на резонансной частоте возникает множество гармонических искажений. Решить проблему завала АЧХ и нелинейных искажений слишком резким снижением резонансной частоты нельзя, так как огромная амплитуда резонансных колебаний порвёт диффузор.
Резонансы корпуса и форма
Все корпуса колонок представляют собой объемные резонаторы (будь то открытый ящик, ФИ, ЗЯ или лабиринт), у которых огромное количество собственных резонансов. Это хорошо видно по формуле расчета резонансов для закрытого ящика:
где a, b и l — стороны корпуса резонатора, а m, n и g — целые числа
Резонансы определяются стоячими волнами, возникающими внутри корпуса, что существенно влияет на АЧХ, как правило, не лучшим образом. Чтобы их убрать используют всё те же демпферы, которые снижают добротность резонансов, однако полностью их не убирают.
Можно говорить о том, что резонансы напрямую зависят от формы корпуса, по иному, от соотношения сторон. Распространенная сегодня форма в виде столба прямоугольного сечения является крайне неудачной, если говорить о резонансах корпуса. А форма куба, напротив, позволяет размазать резонансы по всей АЧХ и сделать менее заметными. Для ЗЯ и ФИ также иногда используется сферическая форма корпуса, которая препятствует образованию стоячих волн, но также не способна полностью их устранить.
Пара слов об открытом ящике
Несмотря на то, что сегодня это оформление тяжело встретить в серийных устройствах, у него есть одно уникальное преимущество. Открытый ящик не влияет на резонансную частоту динамика. Именно за эту особенность его любили в прошлом. Большой проблемой открытого ящика являются внушительные габариты. Без них он не способен с достаточным звуковым давлением воспроизводить низкие частоты. По этой причине сегодня такие АС в основном удел любителей и кастомных мастерских, которые производят их как жанровые модели для музыки, нижний порог частотного диапазона которой заканчивается в районе 200 — 300 Гц. В качестве акустического демпфера в открытых ящиках использовалась панель акустического сопротивления в виде тонкой перфорированной задней стенки.
Закрытый ящик
Закрытый ящик представляет собой корпус, полностью изолирующий динамик во внутреннем объеме. Конструкция закрытого ящика приводит к повышению резонансной частоты динамической головки, так как помимо жесткости подвеса диффузора начинает влиять упругость воздуха, находящегося во внутреннем объеме ящика. Чем меньше этот объем, тем выше частота резонанса.
Первый вариант закрытого ящика — это сделать объем ящика настолько большим, что бы он не мог ощутимо повлиять на резонансную частоту динамика.
Второй вариант закрытого ящика предложил Эдгар Вильчур. Он обратил внимание на то, что линейность пневматической пружины, которой фактически являлся воздух в замкнутом объеме, выше, чем линейность подвеса диффузора. Вильчур впервые предложил максимально снизить жесткость подвеса диффузора, чтобы фактически заменить механический подвес на пневматический, настолько, на сколько это было возможно. И таким образом увеличить линейность.
Фрагмент патентной заявки Эдгара Вильчура на закрытый ящик
Оба варианта, как всё в акустике, имеют свои достоинства и недостатки. Вариант Вильчура не позволил снизить коэффициент гармоник, так как диффузор не может держаться только на воздухе, и механические части сохраняются в конструкции, пусть часть функции подвеса берет на себя внутренний объем. Более того, выяснилось, что при малых объемах и работе в поршневом режиме воздух также нелинеен. Чтобы избежать такой нелинейности объем ящика должен быть равен объемам комнаты, в которой находится. Что практически нивелирует все преимущества варианта Вильчура.
Вариант с большим объемом не требует особых условий для конструкции динамика и сравнительно хорошо работает, имея габариты немного меньше открытого ящика при равном SPL (звуковом давлении) на низких частотах. При этом граница частотного диапазона на НЧ, при меньших размерах, может быть значительно ниже, чем в открытом ящике. Для того, чтобы сгладить горбатую АЧХ, используются демпфирующие звукопоглотители.
Капризный фазоинвертор
Принцип ФИ акустики знаком многим. Фазы колебания изнутри и снаружи в том же закрытом ящике противоположны. Установка в корпус трубы определённой длины позволяет повернуть фазу на 180 градусов. Таким образом на выходе из трубы фазоинвертора звук на его резонансной частоте становится синфазным со звуком с внешней стороны диффузора, они складываются и звуковое давление увеличивается.
Наличие дополнительного резонанса увеличивает скорость спада АЧХ на 6 дБ на октаву. В недостаточно широких трубах возникают вихри из-за большой скорости прокачки воздуха, что отражается на звуке в виде выраженных посторонних призвуков и дополнительных нелинейных искажений. Также в ФИ нередко возникают т.н. органные СЧ-резонансы, турбулентные и другие призвуки. Избавление от всех этих “прелестей” стоит значительных усилий со стороны колонкостроителей инженеров. По этой причине можно говорить о том, что ФИ-акустика при всей её популярности является наиболее проблемной.
Покупать ФИ-акустику без предварительного посещения шоурума и прослушивания — категорически нельзя, так как можно нарваться на очень красивые, но гудяще-дребезжащие колонки.
В силу изложенного, говорить об ФИ-акустике как о каком-то универсальном решении не приходится. Главным достоинством является усиленное воспроизведение НЧ на резонансной частоте ФИ, за которую пользователь платит линейностью АЧХ, высокой вероятностью резонансных проблем и посторонних призвуков.
Трансмиссионная линия
Это один из вариантов лабиринтной акустики, о котором я подробно писал здесь.
В итоге
Таким образом наиболее простые и наименее проблемные с акустической точки зрения типы акустики требуют большего объема, а любые ухищрения, в частности инверсия фазы, чревато искажениями и призвуками. Из изложенного можно заключить, что рынок делает выбор в пользу громкой, а если точнее, басовитой акустики меньших размеров, и практически игнорирует логичные решения, предполагающие более высокую верность воспроизведения.
90% АС для дома, ориентированных на hi-fi рынок, которые производятся сегодня в мире — это фазоинверторная акустика преимущественно двух типов: напольные столбики и небольшие полочники. Для некоторых людей проблему с ФИ решают заглушки, которыми закрывается ФИ, что превращает АС в ЗЯ.
Реклама
Мы продаём акустические системы. В нашем каталоге их много, при желании можно найти АС и сабвуферы закрытого типа, в изобилии представлены АС с фазоинвертором.