Для улавливания чего применяется ионообменная очистка сточных вод
Что такое ионообменная очистка воды
Ионный обмен как метод очистки воды
В основе механизма деминерализации воды ионным обменом лежит способность ионообменных смол избирательно забирать из электролита ионы металлов взамен на эквивалентное количество ионов ионита. На скорость процесса влияет валентность ионов, их заряд, степень гидратации, радиус иона. Реакция ионного обмена в воде:
H[Кат] + NaCL ↔ Na[Кат] + HCL;
Попадая в анионитовые фильтры, анионы образующихся кислот и находящиеся в исходном водном растворе обмениваются на подвижные ионы анионитов:
Ионообменная обработка воды
Катиониты и аниониты делят на моно- и полифункциональные. Монокатиониты, имеющие в составе сульфогруппу, относятся к сильнокислым, диссоциируют полностью и могут осуществлять ионный обмен в растворе с любым рН. Катиониты с карбоксильной и фенольной группами являются слабокислотными и могут активно работать лишь в щелочной среде. Фосфоросодержащие группы имеют среднее значение кислотности. Слабоосновные аниониты чаще бывают полифункциональными. Полезная обменная емкость анионитов повышается с понижением рН раствора.
Ионный обмен для очистки воды
Для деминерализации воды водный раствор, избавленный от основных примесей путем предварительной очистки, поступает последовательно в катионобменные и анионообменные фильтры. В катионите связываются ионы металлов, а в раствор уходят соответствующие кислоты. Образующийся СО2 удаляют дегазацией. Затем в анионите происходит сорбция сильнокислых анионов.
В зависимости от необходимой глубины очистки реализуются одно-, двух- и трехступенчатые ионообменные аппараты. Во всех установках ионообменной очистки воды для связывания катионов металлов из водного раствора применяют сильнокислотные катиониты с хорошей сорбционной способностью.
Основные цели применения ионообменного метода обессоливания воды
Ионообменная очистка воды от железа
Обезжелезивание воды катионированием используют при необходимости одновременного удаления Fe и солей, обуславливающих жесткость, и когда обрабатываемый водный раствор на пути к катионитовому фильтру не обогащается кислородом. Вода проходит через фильтры, загруженные Na-катионитом. Регенерируют такой катионит NaCl.
Подробнее про обработку воды ионным обменом в частных домах вы можете прочитать здесь!
Другое применение ионного обмена для очистки воды
Метод ионного обмена для получения воды очищенной
Соединение в одной установке смешанного действия анионита и катионита позволяет достигнуть высокой чистоты раствора: за один цикл удаляются практически все растворенные ионы. Получаем чистую воду с низкой минерализацией и нейтральным рН. Избирательно подобранные по размеру и плотности зерна монодисперсных ионитов в современных фильтрах обеспечивают качественное связывание и стабильность параметров. Такие установки ионного обмена воды не регенерируются и подлежат замене при выработке ионообменной емкости.
Преимущества очистки воды с помощью ионного обмена
К минусам ионообменной технологии очистки воды можно отнести:
Как выбрать ионообменную установку для воды
Выбирать ионообменные установки для очистки воды нужно, исходя из технических условий на ионообменные материалы, учитывая требования потребителей очищенной воды и экономические показатели. Общие рекомендации при выборе схемы ионообменной очистки воды:
Ионообменный метод очистки воды
Ионообменный метод очистки воды считается наиболее результативным для водоподготовки и умягчения воды. Он нашел широкое применение в промышленности.
Суть ионообменного процесса очистки воды заключается в замене ионов из раствора (жидкости) на ионы, находящиеся на поверхности ионитов. Иониты входят в состав ионообменного материала, который вносится в фильтр (колонну).
В зависимости от фильтрующего материала, ионообменные фильтры (колонны) могут применяться для удаления из жидкости солей жесткости (Ca и Mg), железа, марганца и тяжелых металлов, нитратов, кислот, солей кремния, органических соединений, радиоактивных отходов и прочих загрязнений.
Ионообменный способ очистки воды может применяться в случаях, когда требуется удалять только определенные взвеси или соли, оставляя все остальное, то есть селективно.
Исходя из состава поступающей на очистку воды применяют определенные фильтрующие материалы:
Ионообменные смолы. Одни обмениваются катионами (катионообменные смолы), другие — анионами (анионообменные смолы). Имеют пористую и проницаемую структуру, размер гранул составляет 0,3 – 0,8 мм. Аниониты бывают сильноосновные и слабоосновные, а катиониты — сильнокислотные и слабокислотные.
Волокнистые ионообменные материалы в различных текстильных формах. В основном применяют для дополнительной очистки питьевой воды от катионов тяжелых металлов, радионуклидов и железа.
Катионирование — процесс очистки жидкости ионообменным методом, когда происходит обмен катионов. В зависимости от вида ионов (Н+ или Na+), которые присутствуют в объеме катионита, различают две разновидности катионирования: Н-катионирование (смолы обменивают катионы из воды на ионы водорода) и Na-катионирование (смолы обменивают ионы из воды, на ионы натрия).
Анионирование — процесс очистки раствора ионообменным методом, когда происходит обмен анионов на ион гидроксида. Сочетание OH-анионирования и Н-катионирования приводит обессоливание воды.
Ионообменная очистка воды применяется в случае:
Невысокой концентрации загрязнения жидкости.
На финальном этапе очистки, когда требуется высококачественная вода.
Использования в установках обессоливания и умягчения воды. Такая вода необходима для работы котельных, ТЭЦ и АЭС.
Очистка воды ионообменными смолами используется для умягчения воды. Вода, проходя сквозь ионообменный материал, заменяет ионы электролитов на иониты, при этом изменяется химическая структура и жидкости, и реагента, уходит жесткость.
В зависимости от необходимого количества умягченной жидкости, используют разное число колонн и их размеры.
При 1-ступенчатой очистке требуется 2 колонны. Жесткость воды уменьшается до 0,05–0,1 г-экв/м3.
При 2-ступенчатой очистке уже нужно 2 большие и 2 малые колонны. Жесткость воды достигает 0,01 г-экв/м3.
Такая вода нужна в энергетике, на металлургических, фармакологических производствах, пищевой и электронной промышленности.
На базе колонн (фильтров) проектируются ионообменные установки очистки воды. Они бывают ручные, автоматические и комбинированные.
Промышленная ионообменная установка обычно включает:
Насосы для подачи, дозировки и циркуляции воды.
Вертикальные фильтрующие элементы с дренажно-распределительными системами снизу и сверху корпуса.
Блок восстановления (регенерации).
Запорная арматура с трубопроводом обвязки
Блок управления и контроля, отвечающий за забитость фильтрационного материала
Электрическая и гидравлическая “обвязка”.
При засорении фильтрующего материала, требуется их регенерация раствором в виде хлорида натрия или др.
Ионообменная система очистки воды может работать периодически и непрерывно.
Установки периодического действия. При этом происходит ионообмен, промывка ионита примесей, восстановление ионита, промывка ионита от восстанавливающего раствора. Недостатки этого метода — большие объемы установки, большое количество использованных реагентов, единовременно требуется большое количество засыпки ионообменного материала, сложность автоматизации.
Установки непрерывного действия. Применяется для снижения жесткости воды для паровых и водогрейных котлов, на предприятиях с бесперебойным производственным циклом:
Когда в рабочем режиме один фильтр, второй фильтр находится в режиме восстановления/ожидания. Работая непрерывно, производительность ее не больше, чем у установки периодического действия.
Когда в рабочем режиме оба фильтра, производительность увеличивается в 2 раза. Если одна колонн на восстановление, то вторая работает в форсированном режиме, подача отфильтрованной воды не останавливается.
Обозначения основных моделей ионообменных установок:
УИ – (S, A, D, MB, SP)(R, K, C) – (М1. Мn)/K – (T, V, Q, R), например УИ – SK(2510) – M1 – 0817V, где
S,A,D,MB,SP — установки умягчения, декарбонизации, деминерализации, ионообменники со смешанными слоями, специальные технологии соответственно.
Тип управления установкой — R ручное, К автоматизированный клапан управления, С центральный контроллер.
Кол-во фильтров в установке (М1…Мn).
Тип управления по сигналу к регенерации (Т-по времени, V – по объему обработанной воды, Q – по качеству воды, R – по требованию оператора).
Преимущества системы очистки воды ионообменной смолой.
Очистка жидкости на самом высоком уровне.
Различные иониты, отличающиеся по составу и конструкции.
Невысокие затраты на эксплуатацию. Фильтрующий материал меняют не реже через 2 года, в некоторых случаях через 7 лет, все зависит от вида материала и условий работы.
Все процессы автоматизированы.
Высокое качество материалов и оборудования, имеют необходимые сертификаты.
Ионообменная очистка сточных вод
Ионный обмен – это процесс обмена между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твердой фазы материалов, называемых ионитами. Сущность метода ионного обмена определяет область его применения. Использование ионообменной технологии позволяет эффективно решать следующие задачи:
1. Обессоливание слабоминерализованных сточных вод, содержащих неорганические загрязнители.
2. Доочистку промышленных сточных вод от трудноокисляемых органических соединений, в т. ч. пестицидов и красителей.
3. Доочистку хозяйственно-бытовых сточных вод от растворенных солей, биогенных веществ и тяжелых металлов для повторного использования в промышленных и сельскохозяйственных целях.
4. Селективное глубокое извлечение токсичных металлов из сточных вод, сбрасываемых в водоемы.
5. Обессоливание и умягчение добавочной воды для создания систем замкнутого оборотного водоснабжения.
6. Очистку и повторное использование сточных вод и конденсатов в теплоэнергетике, в т. ч. атомной.
По знаку заряда обменивающихся ионов иониты делятся на катиониты и аниониты. Первые проявляют кислотные свойства (т. е. задерживают катионы), вторые – основные (т. е. задерживают анионы)[5]. По происхождению иониты подразделяются на природные и искусственные, а по составу – на неорганические и органические. К неорганическим природным ионитам относятся природные цеолиты, алюмосиликаты (глины), слюды, оксиды, фосфаты и силикаты некоторых металлов (титана, кальция, циркония и др.).
К неорганическим искусственным ионитам относятся синтетические цеолиты, ферроцианиды, фосфаты, гидроксиды, оксиды и сульфиды металлов (алюминия, железа, титана, никеля, циркония и др.).
К органическим природным ионообменным материалам относятся каменные и бурые угли, торф, целлюлоза и др.
Наибольшее применение в практике нашли синтетические органические иониты на основе высокомолекулярных органических соединений направленного синтеза [10].
В зависимости от природы противоионов (ионов, переходящих из ионитов в раствор) различают многочисленные ионные формы ионитов. Например, катиониты могут находиться в водородной (Н-форма), солевой (Na-, Са- и др.) и смешанных формах. Аниониты могут находиться в гидроксидной (OH-форма), солевой (SO4-, Cl- и др.) и смешанных формах.
Важнейшим свойством ионитов является их поглотительная способность, называемая ионообменной емкостью. При этом различают полную обменную емкость ионитов – количество находящихся в воде г-экв ионов, которые может поглотить 1 м 3 ионита до полного насыщения, и рабочую (динамическую) емкость – количество г-экв ионов, которое может поглотить ионит до начала проскока в фильтрат поглощаемых ионов. Полная обменная емкость ионитов всегда больше рабочей. Характеристики некоторых ионообменных материалов представлены в приложении 27.
Характерной особенностью ионитов является обратимость процесса сорбции ионов, т. е. проведения реакции в обратном порядке. Эта особенность лежит в основе методов регенерации ионообменных материалов.
Ионообменная очистка воды может осуществляться в аппаратах с плотным и псевдоожиженным слоем, пульсационных колоннах и т. д. Наибольшее распространение в практике получили ионообменные фильтры с плотным слоем, имеющие относительно простую конструкцию, а также надежный и отработанный технологический процесс. В зависимости от конструктивных и эксплуатационных особенностей данные фильтры можно классифицировать следующим образом:
1) по направлению потока очищаемой воды – фильтры с нисходящим потоком, восходящим потоком и двухпоточные фильтры (фильтры, в которых очищаемая вода подается одновременно в верхнюю и нижнюю часть аппарата, а отводится из средней его части);
2) по взаимному направлению потока очищаемой воды и регенерирующего раствора – параллельно-точные (прямоточные) фильтры, в которых очищаемая вода и реагент при регенерации движутся в одном направлении, и противоточные фильтры, в которых очищаемая вода и регенерирующий раствор движутся в противоположных направлениях;
3) по виду ионитовой загрузки – катионитовые фильтры, анионитовые фильтры и фильтры смешанного действия (загруженные последовательными слоями катионита и анионита);
4) по количеству фильтрующих слоев – одно-, двух- и трехсекционные;
5) по месту проведения регенерации загрузки – фильтры с внутренней регенерацией и выносной регенерацией (при этом ионит выгружается из фильтра и регенерируется вне его);
6) по месту расположения в технологической цепи – фильтры первой и второй ступени.
Серийно выпускаемые параллельно-точные фильтры имеют следующую маркировку: ФИПа-I-2,0-0,6. В маркировке: «ФИ» – фильтр ионообменный, «Па» – параллельно-точный, «I» – 1-й ступени, «2,0» – диаметр 2 м, «0,6» – максимальное рабочее давление 0.6 МПа. Противоточные фильтры имеют аналогичную маркировку – ФИПр, фильтры смешанного действия с выносной регенерацией – ФСДНр, с внутренней регенерацией – ФСДВр. Конструкция ионообменного фильтра представлена на рис. 4.32, технические характеристики фильтров ФИПа – в приложении 28.
Выбор схемы ионообменной очистки производится в зависимости от назначения установки, состава и расхода сточных вод, а также требований к качеству очищенной воды.
Очистка воды от катионов слабых оснований и анионов слабых кислот при малом содержании ионов щелочных металлов и ионов аммония производится по одноступенчатой схеме последовательным фильтрованием через катионит в Н-форме и слабоосновный анионит в ОН-форме. При наличии в очищаемой воде окислителей (хромат- и бихроматионов) в качестве анионитовой загрузки следует выбирать слабоосновные материалы АН-18-10П, АН-251 или сильноосновный анионит АВ-17, стойкие к окислительному воздействию указанных ионов.