ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΠΏΡΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π΅Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° T (ΠΎΡΠ»ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡ Π½ΡΠ»Ρ).
Π€ΡΠ½ΠΊΡΠΈΡ y=f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Tβ 0, ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
Π§ΠΈΡΠ»ΠΎ T Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x).
ΠΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x-T ΠΈ x+T ΡΠ°ΠΊΠΆΠ΅ Π²Ρ
ΠΎΠ΄ΡΡ Π² ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x).
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ
1) ΠΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ y=f(x) Π΅ΡΠ»ΠΈ T β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ f(x-T)= f(x)=f(x+T).
2) ΠΠ»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ y=f(x) Π΅ΡΠ»ΠΈ T1 β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ
Π’Π°ΠΊ ΠΊΠ°ΠΊ T2 ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x), ΡΠΎ Π΄Π»Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x-T1
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΈΡΠ»ΠΎ T1 +T2 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x).
3) ΠΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π²ΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΈΠ· ΡΠ²ΠΎΠΉΡΡΠ²Π° 2, Π΅ΡΠ»ΠΈ T Π²Π·ΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ n ΡΠ°Π·.
4) ΠΡΠ»ΠΈ T β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΡΠΎ Π΄Π»Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° kx+b
ΠΠ½Π°ΡΠΈΡ ΡΠΈΡΠ»ΠΎ T/k β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f(kx+b).
5) ΠΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅Π΄ΡΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠΌΠΌΡ f(x) ΠΈ g(x):
ΠΠ· ΡΠ²ΠΎΠΉΡΡΠ²Π° 3 ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².
ΠΡΠ»ΠΈ ΡΡΠ΅Π΄ΠΈ Π²ΡΠ΅Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ , ΡΠΎ Π΅Π³ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π³Π»Π°Π²Π½ΡΠΌ (ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ) ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ .
ΠΡΠΈΠΌΠ΅ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ
1) ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°
ΡΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x ΠΈ y=cos x ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=2Ο .
2) Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y=tg x Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ
tg (x-Ο )=tg x =tg (x-Ο ), ΡΠΎ y=tg x β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=Ο .
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, y=ctg x β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=Ο.
3) Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° x ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° k Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ D(x+k)=D(x), ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΠΈΡΠΈΡ
Π»Π΅ D(x) β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ kβQ, kβ 0.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡΠΊΠ°Π·Π°ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΡ ΠΠΈΡΠΈΡ
Π»Π΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
4) Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=b, b β Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (bβR). ΠΡΠ° ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠ΅Π» ΠΈ ΠΏΡΠΈ Π»ΡΠ±ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ
Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y=b, ΡΠΎ Π΅ΡΡΡ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° m (mβR), y(x)=y(x+m)=b.
ΠΠ½Π°ΡΠΈΡ y=b β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=m, Π³Π΄Π΅ mβR, mβ 0.
Π’Π°ΠΊ ΠΊΠ°ΠΊ m β Π»ΡΠ±ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΎΠ½ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ½ΠΊΡΠΈΡ y=b Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
5) Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ x ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ³ΠΎ k Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ =, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π΄ΡΠΎΠ±Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠΈΡΠ»Π° y= β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ kβΞ, kβ 0.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ΅Π»ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, T=1 β Π³Π»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=.
ΠΠ»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΉ y=sin x ΠΈ y=cos x T=2Ο.
ΠΠ»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΉ y=tg x ΠΈ y=ctg x T=Ο.
ΠΡΠ»ΠΈ T β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x, ΡΠΎ sin (x-2Ο )=sin x = sin (x-2Ο ) Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x.
Π’ΠΎ Π΅ΡΡΡ Π»ΡΠ±ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ 2Ο n, nβZ.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΏΡΠΈ n=1 ΠΈ ΠΎΠ½ΠΎ ΡΠ°Π²Π½ΠΎ T=2Ο .
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, 2Ο β Π³Π»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x.
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΎ Π³Π»Π°Π²Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΡΡΠ½ΠΊΡΠΈΠΉ y=cos x, y=tg x ΠΈ y=ctg x.
ΠΠ· 4-Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ y=sin (kx+b) ΠΈ y=cos (kx+b) (kβ 0) Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄
Π° Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ y=tg (kx+b) ΠΈ y=ctg (kx+b) (kβ 0) Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ T (Π½Π° ΠΎΡΠΈ Ox).
ΠΠ°Π½Π° ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ T.
Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΎΡ ΡΡΠΎΠΉ ΡΠ°ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Ox Π½Π° Β±T, Β±2T,β¦ :
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π‘ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΠΌΡ Π²ΡΡΡΠ΅ΡΠ°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ Π°Π»Π³Π΅Π±ΡΡ. ΠΡΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄. ΠΠ°ΠΊ Π±ΡΠ΄ΡΠΎ ΠΌΡ ΠΊΠΎΠΏΠΈΡΡΠ΅ΠΌ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° β ΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌ ΡΡΠΎΡ ΠΏΠ°ΡΡΠ΅ΡΠ½ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄ΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ. ΠΡΠ»ΠΈ Π²Ρ ΡΡΠΈΡΠ΅ΡΡ Π² ΠΌΠ°ΡΠΊΠ»Π°ΡΡΠ΅ ΠΈΠ»ΠΈ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΡΡΡΠ΅ Π²ΡΠ·Π° β Π²Π°ΠΌ ΠΌΠΎΠ³ΡΡ Π²ΡΡΡΠ΅ΡΠΈΡΡΡΡ Π²ΠΎΡ ΡΠ°ΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ:
1. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ
Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠ΅Π». ΠΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π²Π΅Π½ Π΄Π²ΡΠΌ ΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΡ ΡΠ°ΠΊ:
ΠΠ°ΠΊ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΡΡΠ½ΠΊΡΠΈΡ Π² Π΄ΡΡΠ³ΠΈΡ
ΡΠΎΡΠΊΠ°Ρ
β ΠΌΡ Π½Π΅ Π·Π½Π°Π΅ΠΌ. ΠΠΎ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ
ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π΄Π»ΠΈΠ½ΠΎΠΉ 2, ΡΡΠΎ ΠΈ Π½Π°ΡΠΈΡΠΎΠ²Π°Π½ΠΎ.
2. ΠΡΠ°ΡΠΈΠΊ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΎΡ 0 Π΄ΠΎ 1; ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 2. ΠΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ f(4 ).
ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ΅ΡΠ½Π°Ρ, Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΡΡΡΠΎΠΈΠΌ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΏΡΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΡ ΡΠ°ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ 0 Π΄ΠΎ 1.
ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 2. ΠΠΎΠ²ΡΠΎΡΠΈΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΡΡΠ°ΡΡΠΎΠΊ Π΄Π»ΠΈΠ½Ρ 2, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΆΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½.
3. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΆΠ°ΡΠΈΠ΅ΠΌ Π² 3 ΡΠ°Π·Π° ΠΏΠΎ ΠΎΡΠΈ X (ΡΠΌΠΎΡΡΠΈ ΡΠ΅ΠΌΡ Β«ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ).
Π Π°ΡΡΡΠΆΠ΄Π°Ρ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, ΠΏΠΎΠ»ΡΡΠΈΠΌ, ΡΡΠΎ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π²Π΅Π½ ΠΠ° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΠ²Π½ΠΎ 5 ΠΏΠΎΠ»Π½ΡΡ
Π²ΠΎΠ»Π½ ΡΡΠ½ΠΊΡΠΈΠΈ
4. ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 12, Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 8. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΊΡΠ°ΡΠ½ΠΎΠΌΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ
.
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ Π Π°Π·Π΄Π΅Π»Ρ: ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°
Π¦Π΅Π»Ρ: ΠΎΠ±ΠΎΠ±ΡΠΈΡΡ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π·Π½Π°Π½ΠΈΡ ΡΡΠ°ΡΠΈΡ
ΡΡ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ βΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉβ; ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ Π½Π°Π²ΡΠΊΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ; ΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ° ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ; Π²ΠΎΡΠΏΠΈΡΡΠ²Π°ΡΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, Π°ΠΊΠΊΡΡΠ°ΡΠ½ΠΎΡΡΡ.
ΠΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅: ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ, ΠΌΡΠ»ΡΡΠΈΠΌΠ΅Π΄ΠΈΠΉΠ½ΡΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΎΡ, ΠΊΠ°ΡΡΠΎΡΠΊΠΈ Ρ Π·Π°Π΄Π°Π½ΠΈΡΠΌΠΈ, ΡΠ»Π°ΠΉΠ΄Ρ, ΡΠ°ΡΡ, ΡΠ°Π±Π»ΠΈΡΡ ΠΎΡΠ½Π°ΠΌΠ΅Π½ΡΠΎΠ², ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ Π½Π°ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΡΡΠ»Π°
βΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° β ΡΡΠΎ ΡΠΎ, ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΡΠ΅Π³ΠΎ Π»ΡΠ΄ΠΈ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΏΡΠΈΡΠΎΠ΄ΠΎΠΉ ΠΈ ΡΠΎΠ±ΠΎΠΉβ Π.Π. ΠΠΎΠ»ΠΌΠΎΠ³ΠΎΡΠΎΠ²
I. ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΡΡΠ°ΠΏ.
ΠΡΠΎΠ²Π΅ΡΠΊΠ° Π³ΠΎΡΠΎΠ²Π½ΠΎΡΡΠΈ ΡΡΠ°ΡΠΈΡ
ΡΡ ΠΊ ΡΡΠΎΠΊΡ. Π‘ΠΎΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΡ ΠΈ Π·Π°Π΄Π°Ρ ΡΡΠΎΠΊΠ°.
II. ΠΡΠΎΠ²Π΅ΡΠΊΠ° Π΄ΠΎΠΌΠ°ΡΠ½Π΅Π³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ.
ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅ΡΡΠ΅ΠΌ ΠΏΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΠΌ.
III. ΠΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΡ Π·Π½Π°Π½ΠΈΠΉ.
1. Π£ΡΡΠ½Π°Ρ ΡΡΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π±ΠΎΡΠ°.
1) Π‘ΡΠΎΡΠΌΠΈΡΡΠΉΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ 2) ΠΠ°Π·ΠΎΠ²ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΉ y=sin(x), y=cos(x) 3). ΠΠ°Π·ΠΎΠ²ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΉ y=tg(x), y=ctg(x) 4) ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΡΡΠ³Π° Π²Π΅ΡΠ½ΠΎΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ:
y=sin(x) = sin(x+360ΒΊ) y=cos(x) = cos(x+360ΒΊ) y=tg(x) = tg(x+18 0ΒΊ) y=ctg(x) = ctg(x+180ΒΊ)
tg(x+ Ο n)=tgx, n β¬ Z ctg(x+ Ο n)=ctgx, n β¬ Z
sin(x+2 Ο n)=sinx, n β¬ Z cos(x+2 Ο n)=cosx, n β¬ Z
5) ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ?
1) ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ
a) sin( 740ΒΊ ) = sin(2 0ΒΊ ) b) cos( 54ΒΊ ) = cos(-1026ΒΊ) c) sin(-1000ΒΊ) = sin( 80ΒΊ )
2. ΠΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΠ³ΠΎΠ» Π² 540ΒΊ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ y= cos(2x)
3. ΠΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΠ³ΠΎΠ» Π² 360ΒΊ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ y=tg(x)
a) tg 375ΒΊ b) ctg 530ΒΊ c) sin 1268ΒΊ d) cos (-7363ΒΊ)
5. ΠΠ΄Π΅ Π²Ρ Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ ΡΠΎ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ ΠΠΠ ΠΠΠ, ΠΠΠ ΠΠΠΠΠ§ΠΠΠ‘Π’Π¬?
ΠΡΠ²Π΅ΡΡ ΡΡΠ°ΡΠΈΡ
ΡΡ: ΠΠ΅ΡΠΈΠΎΠ΄ Π² ΠΌΡΠ·ΡΠΊΠ΅ β ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΈΠ»ΠΈ ΠΌΠ΅Π½Π΅Π΅ Π·Π°Π²Π΅ΡΡΠ΅Π½Π½Π°Ρ ΠΌΡΠ·ΡΠΊΠ°Π»ΡΠ½Π°Ρ ΠΌΡΡΠ»Ρ. ΠΠ΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ β ΡΠ°ΡΡΡ ΡΡΡ ΠΈ ΡΠ°Π·Π΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π° ΡΠΏΠΎΡ
ΠΈ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΠΎΡ 35 Π΄ΠΎ 90 ΠΌΠ»Π½. Π»Π΅Ρ.
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΠ»ΡΡΠ°ΡΠΏΠ°Π΄Π° ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Π΄ΡΠΎΠ±Ρ. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠ΅ΡΠ°ΡΡ β ΠΏΠ΅ΡΠ°ΡΠ½ΡΠ΅ ΠΈΠ·Π΄Π°Π½ΠΈΡ, ΠΏΠΎΡΠ²Π»ΡΡΡΠΈΠ΅ΡΡ Π² ΡΡΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΡΡΠΎΠΊΠΈ. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΠ΅Π½Π΄Π΅Π»Π΅Π΅Π²Π°.
6. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ°Ρ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ ΡΠ°ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ.
7. ΠΠ΄Π΅ Π² ΠΆΠΈΠ·Π½ΠΈ Π²Ρ Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ
ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²?
ΠΡΠ²Π΅Ρ ΡΡΠ°ΡΠΈΡ
ΡΡ: ΠΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΎΡΠ½Π°ΠΌΠ΅Π½ΡΠΎΠ², Π½Π°ΡΠΎΠ΄Π½ΠΎΠ΅ ΡΠ²ΠΎΡΡΠ΅ΡΡΠ²ΠΎ.
IV. ΠΠΎΠ»Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ.
(Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Π½Π° ΡΠ»Π°ΠΉΠ΄Π°Ρ
.)
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ.
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f(x)=1+35>
Π Π΅ΡΠ΅Π½ΠΈΠ΅: ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Π’-ΠΏΠ΅ΡΠΈΠΎΠ΄ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’ΠΎΠ³Π΄Π° f(x+T)=f(x) Π΄Π»Ρ Π²ΡΠ΅Ρ
x β¬ D(f), Ρ.Π΅.
ΠΠΎΠ»ΠΎΠΆΠΈΠΌ x=-0,25 ΠΏΠΎΠ»ΡΡΠΈΠΌ
ΠΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ, ΡΡΠΎ Π²ΡΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ) Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ ΡΡΠ΅Π΄ΠΈ ΡΠ΅Π»ΡΡ
ΡΠΈΡΠ΅Π». ΠΡΠ±Π΅ΡΠ΅ΠΌ ΡΡΠ΅Π΄ΠΈ ΡΡΠΈΡ
ΡΠΈΡΠ΅Π» Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΡΠΎ 1 . ΠΡΠΎΠ²Π΅ΡΠΈΠΌ, Π½Π΅ Π±ΡΠ΄Π΅Ρ Π»ΠΈ ΠΎΠ½ΠΎ ΠΈ Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 1 .
Π’Π°ΠΊ ΠΊΠ°ΠΊ=ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π’, ΡΠΎ f(x+1)=3<(x+0.25)+1>+1=3+1=f(x), Ρ.Π΅. 1 β ΠΏΠ΅ΡΠΈΠΎΠ΄ f. Π’Π°ΠΊ ΠΊΠ°ΠΊ 1 β Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΈΠ· Π²ΡΠ΅Ρ
ΡΠ΅Π»ΡΡ
ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠ΅Π», ΡΠΎ T=1.
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ f(x)=cos 2 (x) ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ Π½Π°ΠΉΡΠΈ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠΏΡΡΡΠΈΠΌ Π’-ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π° Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Ρ
ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅
sin(1,5Π’)+5cos(0,75Π’)=5cos =1
=2 Ο n, n β¬ Z
T= , n β¬ Z
ΠΡΠ±Π΅ΡΠ΅ΠΌ ΠΈΠ· Π²ΡΠ΅Ρ
βΠΏΠΎΠ΄ΠΎΠ·ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ
β Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΈΡΠ΅Π» Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΠΌ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΠΎΠ½ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ Π΄Π»Ρ f. ΠΡΠΎ ΡΠΈΡΠ»ΠΎ
f(x+ )=sin(1,5x+4 Ο )+5cos(0,75x+2 Ο )= sin(1,5x)+5cos(0,75x)=f(x)
ΠΠ½Π°ΡΠΈΡ β ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f.
ΠΠ°Π΄Π°ΡΠ° 4. ΠΡΠΎΠ²Π΅ΡΠΈΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ f(x)=sin(x)
ΠΡΡΡΡ Π’ β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f. Π’ΠΎΠ³Π΄Π° Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Ρ
ΠΡΠ»ΠΈ Ρ
=0, ΡΠΎ sin|Π’|=sin0, sin|Π’|=0 Π’= Ο n, n β¬ Z.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ. Π§ΡΠΎ ΠΏΡΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ n ΡΠΈΡΠ»ΠΎ Ο n ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ
ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Ο n>0. Π’ΠΎΠ³Π΄Π° sin| Ο n+x|=sin|x|
ΠΡΡΡΠ΄Π° Π²ΡΡΠ΅ΠΊΠ°Π΅Ρ, ΡΡΠΎ n Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΈ ΡΠ΅ΡΠ½ΡΠΌ ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ, Π° ΡΡΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. ΠΠΎΡΡΠΎΠΌΡ Π΄Π°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΡΠΎΠ²Π΅ΡΠΈΡΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ
f(x)=
ΠΡΡΡΡ Π’ β ΠΏΠ΅ΡΠΈΠΎΠ΄ f, ΡΠΎΠ³Π΄Π°
, ΠΎΡΡΡΠ΄Π° sinT=0, Π’= Ο n, n β¬ Z. ΠΠΎΠΏΡΡΡΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ n ΡΠΈΡΠ»ΠΎ Ο n Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’ΠΎΠ³Π΄Π° ΠΈ ΡΠΈΡΠ»ΠΎ 2 Ο n Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ ΡΠ°Π²Π½Ρ, ΡΠΎ ΡΠ°Π²Π½Ρ ΠΈ ΠΈΡ
Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ
ΠΠ½Π°ΡΠΈΡ, ΡΡΠ½ΠΊΡΠΈΡ f Π½Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ.
ΠΠ°Π΄Π°Π½ΠΈΡ Π΄Π»Ρ Π³ΡΡΠΏΠΏΡ 1.
ΠΡΠΎΠ²Π΅ΡΡΡΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ Π΅Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ (Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ).
ΠΠ°Π΄Π°Π½ΠΈΡ Π΄Π»Ρ Π³ΡΡΠΏΠΏΡ 2.
ΠΡΠΎΠ²Π΅ΡΡΡΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ Π΅Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ (Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ).
ΠΠ°Π΄Π°Π½ΠΈΡ Π΄Π»Ρ Π³ΡΡΠΏΠΏΡ 3.
ΠΠΎ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠΈ ΡΠ°Π±ΠΎΡΡ Π³ΡΡΠΏΠΏΡ ΠΏΡΠ΅Π·Π΅Π½ΡΡΡΡ ΡΠ²ΠΎΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
VI. ΠΠΎΠ΄Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΎΠ³ΠΎΠ² ΡΡΠΎΠΊΠ°.
Π£ΡΠΈΡΠ΅Π»Ρ Π²ΡΠ΄Π°ΡΡ ΡΡΠ°ΡΠΈΠΌΡΡ ΠΊΠ°ΡΡΠΎΡΠΊΠΈ Ρ ΡΠΈΡΡΠ½ΠΊΠ°ΠΌΠΈ ΠΈ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ Π·Π°ΠΊΡΠ°ΡΠΈΡΡ ΡΠ°ΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠΈΡΡΠ½ΠΊΠ° Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅ΠΌ, Π² ΠΊΠ°ΠΊΠΎΠΌ ΠΎΠ±ΡΡΠΌΠ΅, ΠΊΠ°ΠΊ ΠΈΠΌ ΠΊΠ°ΠΆΠ΅ΡΡΡ, ΠΎΠ½ΠΈ ΠΎΠ²Π»Π°Π΄Π΅Π»ΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ, Π° Π² ΡΠ°ΡΡΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΈΡΡΠ½ΠΊΠ° β Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ ΡΠΎ ΡΠ²ΠΎΠΈΠΌ Π²ΠΊΠ»Π°Π΄ΠΎΠΌ Π² ΡΠ°Π±ΠΎΡΡ Π½Π° ΡΡΠΎΠΊΠ΅.
ΠΠΎΠΈ ΡΠΌΠ΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΠΠΎΠΉ Π²ΠΊΠ»Π°Π΄ Π² ΡΠ°Π±ΠΎΡΡ Π½Π° ΡΡΠΎΠΊΠ΅ VII. ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅
1). ΠΡΠΎΠ²Π΅ΡΡΡΠ΅, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ (Π΅ΡΠ»ΠΈ ΠΎΠ½ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ)
ΠΡΡΠΎΡΠ½ΠΈΠΊ
Π£ΡΠΎΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ ΡΡΠ±Π±ΠΎΡΠ°, 4 ΡΠ΅Π½ΡΡΠ±ΡΡ 2021 Π³. Π£ΡΠΎΠΊ 5. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ· ΡΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ°Π·Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π’ β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
β ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ½Π°ΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ (Π½ΠΎ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°) ΡΡΠ΅Π΄ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ. ΠΠ³ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ .
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ
ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ².
Ρ = Ρ
β [Ρ
] , Π³Π΄Π΅ [Ρ
] β ΡΠ΅Π»Π°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°. ΠΡΠ»ΠΈ ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ 1 , ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ ΡΡΠΎΠ³ΠΎ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ :
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Ρ
sin (Ξ± + 360 Β° ) = sin Ξ±
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Ξ± ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠ° ( 2Ο ΠΈΠ»ΠΈ 360 Β° ) Π½Π΅ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊ Π»ΡΠ±ΠΎΠΌΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΠΏΡΡΡΡ Ξ± β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ», ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Ρ ΠΎΡΡΡ ΠΡ
ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ ΠΠ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΎΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ tg Ξ± ΠΈ Ρ tg Ξ± Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΊ ΡΠ³Π»Ρ Ξ± ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ»ΡΠΎΠ±ΠΎΡΠΎΡΠΎΠ²:
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΡΠΈΡΠ»Ρ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° T 1 ΠΈ T 2 ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2Ο ΠΈ Π½Π° 2 ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°, Π½Π΅Ρ.
ΠΠ΅ΡΠΈΠΎΠ΄Π° Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ°Π½Π³Π΅Π½Ρ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 180 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡ β ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
Ρos (β13Ο ) = Ρos 13Ο = Ρos (Ο + 6 β 2Ο ) = Ρos Ο = β1.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΡ β Π½Π΅ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 360 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π° :
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
sin (7Ρ
+ 7 t ) = sin (7Ρ
+ 2 Οk ),
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π° :
ΡΠΎ s 0,3Ρ
= ΡΠΎ s 0,3(Ρ
+ t ) = ΡΠΎ s (0,3Ρ
+ 0,3 t )
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
y = 5 sin 2 x + 2 ctg 3Ρ
.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π°
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ°Ρ
ΠΎΠ΄ΠΈΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ
. ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ΅ΡΠΈΠΎΠ΄Π° Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2 ΠΈ Π½Π° Ο ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ :
Π’ΠΎΠ³Π΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ (ΠΠΠ) Π±ΡΠ΄Π΅Ρ :
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡ»ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ»(11 ΠΊΠ»Π°ΡΡ,ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅)
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ»Π°ΠΉΠ΄Π°ΠΌ:
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ 11 ΠΊΠ»Π°ΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π’β 0,ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Ρ
ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ
+Π’ ΠΈ Ρ
-Π’ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° f(x-Π’)=f(x)=f(x+Π’). Π§ΠΈΡΠ»ΠΎ Π’ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ f(x)
ΠΠ°Π΄Π°ΡΠ°1 ΠΠΎΠΊΠ°Π·Π°ΡΡ,ΡΡΠΎ f(x)=sinx+1 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ f(x)=sinx+1 ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° R. f(x+2Ο)=sin(x+2Ο)+1=sinx+1=f(x)
ΠΠ°Π΄Π°ΡΠ° 3 ΠΠΎΠΊΠ°Π·Π°ΡΡ,ΡΡΠΎ f(x)= ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο Π Π΅ΡΠ΅Π½ΠΈΠ΅: x f (x+2Ο)=
ΠΠ°Π΄Π°ΡΠ° 6 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: f(x+Π’)=f(x) ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΡΠΈ n=1
ΠΠ°Π΄Π°ΡΠ° 7 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ n=1 Π’=2Ο
ΠΠ°Π΄Π°ΡΠ° 8 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ y=cosx ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ 2Ο. Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠ°Π΄Π°ΡΠ° 9 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ sin2x ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π° ΡΡΠ½ΠΊΡΠΈΡ cos3x ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΊΡΠ°ΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ,Ρ.Π΅.Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅.Π’=2Ο
ΠΠ°Π΄Π°ΡΠ° 10 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π° ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΊΡΠ°ΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ,Ρ.Π΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅. Π’=6Ο
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Π΅ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π€ΠΠΠ‘ ΠΠ
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: ΡΠ΅ΠΎΡΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΡΠ΅ΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ Β«ΠΠ½ΡΠΎΡΡΠΎΠΊΒ»
ΠΠΎΠΌΠ΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°: ΠΠ-233469
ΠΠ΅ Π½Π°ΡΠ»ΠΈ ΡΠΎ ΡΡΠΎ ΠΈΡΠΊΠ°Π»ΠΈ?
ΠΠ°ΠΌ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΡΡΠΈ ΠΊΡΡΡΡ:
ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΉ ΠΠ²ΡΠΎΡΠΈΠ·ΡΠΉΡΠ΅ΡΡ, ΡΡΠΎΠ±Ρ Π·Π°Π΄Π°Π²Π°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ.
Π Π ΠΎΡΡΠΈΠΈ ΠΏΠ»Π°Π½ΠΈΡΡΡΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° Π΄Π»Ρ ΠΏΠΎΠ΄ΡΠΎΡΡΠΊΠΎΠ²
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 2 ΠΌΠΈΠ½ΡΡΡ
ΠΡΡΠΈΠ½ ΠΏΠΎΡΡΡΠΈΠ» Π½Π΅ ΡΡΠΈΡΠ°ΡΡ Π²ΡΠΏΠ»Π°ΡΡ Π·Π° ΠΊΠ»Π°ΡΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ Π·Π°ΡΠΏΠ»Π°ΡΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π¨ΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΠΈΠ· Π ΠΎΡΡΠΈΠΈ Π²ΡΠΈΠ³ΡΠ°Π»ΠΈ 8 ΠΌΠ΅Π΄Π°Π»Π΅ΠΉ Π½Π° ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΌ ΡΡΡΠ½ΠΈΡΠ΅ ΠΏΠΎ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΊΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 3 ΠΌΠΈΠ½ΡΡΡ
ΠΠΈΠ½ΠΎΠ±ΡΠ½Π°ΡΠΊΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡ ΠΏΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ Π²ΡΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π 2024 Π³ΠΎΠ΄Ρ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠΊΠΎΠ»Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΎΡΠ²ΠΈΡΡΡΡ ΡΠΏΠΎΡΡΠΈΠ²Π½ΡΠΉ ΠΊΠ»ΡΠ±
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 2 ΠΌΠΈΠ½ΡΡΡ
Π£ΡΠΈΡΠ΅Π»ΡΠΌ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ 1,5 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΡΡΠ±Π»Π΅ΠΉ Π·Π° ΠΏΠ΅ΡΠ΅Π΅Π·Π΄ Π² ΠΠ»Π°ΡΠΎΡΡΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΎΠ΄Π°ΡΠΎΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠΈΠΊΠ°ΡΡ ΠΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ
ΡΠΏΠΎΡΠ½ΡΡ
ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ
ΡΡ ΡΠ°ΠΌΠΈΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ, Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π° ΡΠ°ΠΉΡΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ Π²ΡΡΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ
Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°. ΠΡΠ»ΠΈ ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠ°ΠΉΡΠ° Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡ
Π·Π°ΠΊΠΎΠ½Π½ΡΠΌ Π°Π²ΡΠΎΡΠ°ΠΌ. Π§Π°ΡΡΠΈΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ! ΠΠ½Π΅Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΡΠΎΡΠΊΠΎΠΉ Π·ΡΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ².
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΠ°ΠΌ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΡΠ°Π²ΠΈΡΡΡ ΠΠ°Ρ Ρ
ΠΎΠ΄
ΠΠ³ΡΠ°ΡΡ ΡΠ½ΠΎΠ²Π° ΠΠΎΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΊΠ½ΠΈΠ³Π° Π‘ΠΏΠ°ΡΠΈ Π½Π°Ρ Π΄ΠΎΡΡΡΠΏΠ½Π° Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ ΡΠ΅ΠΉΡΠ°Ρ Π½Π° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅ boochi.ru. Π‘ΠΊΠ°ΡΠ°ΡΡ ΠΊΠ½ΠΈΠ³Ρ Π² ΡΠΎΡΠΌΠ°ΡΠ΅ FB2, TXT, PDF, EPUB Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Π±Π΅Π· ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ. ΠΠΎΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΊΠ½ΠΈΠ³Π° Π‘ΠΏΠ°ΡΠΈ ΡΠ΅Π±Ρ Π΄ΠΎΡΡΡΠΏΠ½Π° Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ ΡΠ΅ΠΉΡΠ°Ρ Π½Π° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅ boochi.ru. Π‘ΠΊΠ°ΡΠ°ΡΡ ΠΊΠ½ΠΈΠ³Ρ Π² ΡΠΎΡΠΌΠ°ΡΠ΅ FB2, TXT, PDF, EPUB Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Π±Π΅Π· ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ. ΠΠΎΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΊΠ½ΠΈΠ³Π° Π‘ΠΏΠ°ΡΠΈ ΠΌΠ΅Π½Ρ Π΄ΠΎΡΡΡΠΏΠ½Π° Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ ΡΠ΅ΠΉΡΠ°Ρ Π½Π° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅ boochi.ru. Π‘ΠΊΠ°ΡΠ°ΡΡ ΠΊΠ½ΠΈΠ³Ρ Π² ΡΠΎΡΠΌΠ°ΡΠ΅ FB2, TXT, PDF, EPUB Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Π±Π΅Π· ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ. ΠΠΎΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΊΠ½ΠΈΠ³Π° Π‘ΡΠ΄ΡΠ±Π° ΠΏΠΎ ΠΊΠ½ΠΈΠ³Π΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½ Π΄ΠΎΡΡΡΠΏΠ½Π° Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ ΡΠ΅ΠΉΡΠ°Ρ Π½Π° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅ boochi.ru. Π‘ΠΊΠ°ΡΠ°ΡΡ ΠΊΠ½ΠΈΠ³Ρ Π² ΡΠΎΡΠΌΠ°ΡΠ΅ FB2, TXT, PDF, EPUB Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Π±Π΅Π· ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ. ΠΠΎΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΊΠ½ΠΈΠ³Π° ΠΡΠ΄Π΅Π½ ΠΡΡ
ΠΈΡΠ΅ΠΊΡΠΎΡΠΎΠ² 6 Π΄ΠΎΡΡΡΠΏΠ½Π° Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ ΡΠ΅ΠΉΡΠ°Ρ Π½Π° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅ boochi.ru. Π‘ΠΊΠ°ΡΠ°ΡΡ ΠΊΠ½ΠΈΠ³Ρ Π² ΡΠΎΡΠΌΠ°ΡΠ΅ FB2, TXT, PDF, EPUB Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Π±Π΅Π· ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ.