Доказать что оксид цинка амфотерный
Урок №56. Цинк
ЦИНК И ЕГО СОЕДИНЕНИЯ
СТРОЕНИЕ АТОМА
Цинк – элемент IIБ подгруппы четвертого периода. Цинк относится к семейству d-элементов, поскольку электронное строение цинка отражается конфигурацией.
Нахождение в природе
Цинковую обманку считают первичным минералом, из которого образовались другие минералы цинка:
§ каламин 2ZnO · SiO 2 · Н 2 O
В организме взрослого человека содержится в среднем около 2 г цинка, в виде его соединений, который концентрируется преимущественно в простате, мышцах, печени и поджелудочной железе.
Недостаток цинка в организме приводит к ряду расстройств — раздражительность, утомляемость, потеря памяти, депрессивные состояния, снижение остроты зрения, уменьшение массы тела, снижение уровня инсулина, аллергические заболевания, анемия и др.
ЦИНК
СФАЛЕРИТ
Способы получения
Цинк получают из сульфидной руды. Сульфид цинка обжигают в печи кипящего слоя:
Чистый цинк из оксида получают двумя способами.
При пирометаллургическом способе оксид цинка восстанавливают углём или коксом при 1200—1300 °C:
Получаемый раствор сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу. При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %).
Качественные реакции
При дальнейшем добавлении избытка щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката :
Химические свойства
2. Цинк взаимодействует со сложными веществами:
§ с парами воды при температуре красного каления с образованием оксида цинка и водорода:
§ с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.).
§ Аналогично: при нагревании с азотной кислотой образуются различные продукты в зависимости о концентрации кислоты – N 2 O, N 2 и др. :
Цинк реагирует с расплавом щелочи с образованием цинката и водорода :
С газообразным аммиаком при 550–600°С образует нитрид цинка:
растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка:
Оксид цинка
Способы получения
1. Окислением цинка кислородом:
2. Разложением гидроксида цинка при нагревании:
3. Оксид цинка можно получить разложением нитрата цинка:
Химические свойства
Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката :
3. Оксид цинка не взаимодействует с водой.
7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Гидроксид цинка
Способы получения
Химические свойства
3. Гидроксид цинка взаимодействует с растворимыми основаниями (щелочами).
В расплаве образуются соли — цинкаты:
Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката :
4. Гидроксид цинка разлагается при нагревании:
Соли цинка
Нитрат и сульфат цинка
Комплексные соли цинка
§ с кислотными оксидами
§ Под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.
§ Под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:
§ Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:
§ Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:
Цинкаты
Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:
§ цинкаты реагируют с кислотами с образованием солей цинка :
§ под действием избытка воды цинкаты переходят в комплексные соли:
Сульфид цинка
Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):
Под действием азотной кислоты сульфид цинка окисляется до сульфата:
(в продуктах также можно записать нитрат цинка и серную кислоту).
Концентрированная серная кислота также окисляет сульфид цинка:
При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:
Цинк. Соединения цинка. Амфотерность оксида и гидроксида цинка.
Нахождение в природе
При получении цинка его руды подвергают обжигу:
Далее оксид цинка восстанавливают углем:
Для получения более чистого металла оксид цинка растворяют в серной кислоте и выделяют электролизом.
При комнатной температуре довольно хрупкий, но при 100-150 0 Сон хорошо гнется и прокатывается в листы, обладает хорошей электро- и теплопроводнocтью.
1. Легко окисляется кислородом:
2. При нагревании легко взаимодействует с неметаллами (серой, хлором):
3. Вода почти не действует на цинк, хотя он и стоит в ряду напряжения металлов значительно раньше водорода. Это объясняется образующейся на поверхности цинка защитной пленки.
4. Растворяется в разбавленных и концентрированных кислотах HCl, H2SО4, НNО3 и в водных растворах; щелочей, например:
Соединения цинка
В соединениях цинк проявляет степень окисления +2.
Оксид цинка является амфотерным соединением, он peагирует с кислотами и щелочами:
Гидроксид цинка Zn(OH)2 выпадает в виде белого студенистого осадка при действии щелочей на растворы солей цинка:
Гидроксид цинка растворяется также в водном растворе аммиака. При этом образуются комплексные ионы [Zn(NН3)4] 2+ :
Из киновари металлическую ртуть получают обжигом руды. При этом ртуть выделяется в виде паров и конденсируется в охлаждаемом приемнике:
Ртуть обладает способностью растворять в себе многие металлы, образуя с ними частью жидкие, частью твердые сплавы, называемые амальгамами. Особенно легко образуется амальгама золота, вследствие чего золотые изделия не должны соприкасаться с ртутью. Железо не образует амальгамы, поэтому ртуть можно перевозить в стальных сосудах.
Пары ртути очень ядовиты и могут вызвать тяжелое отравление.Для этого достаточно даже того ничтожного количества паров, которое образуется при комнатной температуре. Поэтому при всех работах с ртутью необходимо быть очень осторожным. Не следует держать открытыми сосуды с ртутью, все работы с ней надо проводить на эмалированных или железных подносах. Очень опасна ртуть, пролитая на пол. При падении она разбивается на множество мелких капель, которые попадают в щели и могут в течение длительного времени отравлять атмосферу. Поэтому, если ртуть пролилась на пол, необходимо немедленно и тщательно собрать ее. Для удаления ртути можно пользоваться также специальными реактивами (демеркуризаторами). В качестве последних применяют порошок серы, 20%-ный раствор FеСlз, эмульсию из минерального масла и воды, содержащую порошкообразные серу и йод, 10%-ый раствор КМnO4, подкисленный соляной кислотой.
Из металлов подгруппы цинка ртуть наименее активна вследствие высокой энергии ионизации ее атомов.
1. На воздухе ртуть при комнатной температуре не окисляется.
При температуре выше 300°С окисляется кислородом, образуя красный оксид ртути (II) HgO, который при более сильном нагревании снова распадается на ртуть и кислород. В этом соединении степень окисления ртути равна +2:
Известен и другой оксид ртути черного цвета, в котором степень окисления ртути равна + 1, оксид ртути(I) Hg2O.
2. Очень легко взаимодействует с серой:
3. При нагревании взаимодействует с галогенами:
4. В электрохимическом ряду напряжений металлов ртуть находится после водорода. Соляная и разбавленная серная кислота, а также щелочи не действуют на ртуть.
Растворяется в разб. и конц. азотной кислоте и конц. серной кислоте:
5. Взаимодействие с солями
Ртуть взаимодействует с солями ртути (II) с образованием солей ртути (I):
Другие металлы, из-за малой активности, вытеснять из растворов не может.
Соединения ртути
Во всех соединениях ртути (I) атомы ртути связаны между собой, образуя двухвалентные группы – Hg2 – (– Hg – Hg –).
Следовательно, ртуть двухвалентна и в этих соединениях, но одна единица валентности каждого атома ртути затрачивается здесь на связь с другим атомом ртути. Эта связь сохраняется и в растворах солей ртути (I), которые содержат ионы ртути. Таким образом, состав солей ртути (I),
содержащих одновалентный кислотный остаток R, следует изображать не эмпирической формулой HgR, а формулой Hg2R2 (например, Hg2CI2).
Одна из особенностей ртути заключается в том, что для нее неизвестны гидроксиды. В тех случаях, когда можно было бы ожидать их образования, получаются безводные оксиды.
Так, при действии щелочей на растворы солей ртути (I) получается буровато-черный осадок оксида ртути (I):
Точно так же из растворов солей ртути (II) щелочи осаждают оксид ртути (II):
Образующийся осадок имеет желтый цвет, но при нагревании переходит в красную модификацию оксида ртути (II). Данная реакция является качественной на катион ртути Hg 2+
Соли ртути
Нитрат ртути ( I ) Нg2(NО3)2— одна из немногих растворимых солей ртути (I). Получается при действии разбавленной холодной азотной кислоты на избыток ртути:
Хлорид ртути(I) Hg2C12, или каломель, представляет собой белый, нерастворимый в воде порошок. Его получают, нагревая смесь HgCl2 с ртутью:
Каломель может быть получена также действием соляной кислоты или хлорида натрия на растворимые соли ртути (I):
Нитрат ртути ( II ) Нg(NО3)2 получается при действии избытка горячей азотной кислоты на ртуть:
Хорошо растворим в воде. В разбавленных растворах при отсутствии свободной кислоты гидролизуется с образованием белого осадка основной соли НgО ∙ Нg(NО3)2. При нагревании с большим количеством воды основная соль также разлагается, в результате чего получается оксид ртути (II).
Хлорид ртути ( II ), или сулема, HgC12 может быть получен непосредственным взаимодействием ртути с хлором. Это бесцветное вещество, сравнительно мало растворимое в холодной воде (6,6 г в 100 г воды при 20 0 С). Однако с повышением температуры растворимость сулемы сильно возрастает, достигая при 100 0 C58 г в 100 г воды. Из раствора HgC12 кристаллизуется в виде длинных блестящих призм. Обычно эту соль получают, нагревая сульфат ртути (II) с хлоридом натрия:
Йодид ртути ( II ) HgI2 выпадает в виде красивого оранжево-красного осадка при действии раствора йодида калия на соли ртути (II):
В избытке йодида калия соль легко растворяется, образуя бесцветный раствор комплексной соли K2[HgI4]:
Сульфид ртути ( II ) HgS встречается в природе Искусственно он может быть получен в виде вещества черного цвета прямым соединением серы со ртутью или действием сероводорода на растворы солей ртути (II):
Задания для самоконтроля:
1. К какому электронному семейству относятся элементы IIВ группы?
2. Как доказать амфотерные свойства оксида и гидроксида цинка?
4. К каким элементам –переходным или непереходным относят цинк, кадмий, ртуть? Назовите основные сходные черты этих металлов с переходными и непереходными элементами.
5. Как и почему изменяется термическая устойчивость и кислот-но-основные свойства гидроксидов в ряду Zn(OH)2–Hg(OH)2?
6. Чем можно объяснить, что для ртути, в отличие от цинка и кадмия, характерна переменная степень окисления (+ 1 и + 2)? Какова валентность ртути в соответствующих соединениях?
7. Что представляют собой сулема и каломель?
8. Как следует собирать разлитую в помещении ртуть и обезвреживать ее следы?
9. Что такое амальгамы, как их можно получить? В чем заключается химическая причина того факта, что амальгамы щелочных и щелочно-земельных металлов спокойно без взрыва контактируют с водой. Что наблюдается при этом?
Задания для самостоятельной работы:
1. Киноварь и каломель растворяются в «царской водке». Какие продукты при этом получаются? Напишите уравнения соответствующих реакций.
2. Как реагируют цинк, кадмий и ртуть с разбавленными и кон-центрированными а) серной, 2) азотной, в) соляной кислотами. Напишите уравнения соответствующих реакций.
3. Составьте электронную формулу атома ртути в степени окисления +1 и сделайте вывод о парамагнетизме атома. Однако известно, что катионы ртути(I) в водном растворе диамагнитны. Объясните этот факт с учетом состава и строения катиона ртути(I).
4. Написать уравнения реакций, протекающих при добавлении щелочи к растворам нитратов ртути(I) и ртути(II). Изменятся ли продукты реакций, если вместо щелочи использовать водный раствор аммиака?
5. Напишите уравнения реакций, иллюстрирующих амфотерность гидроксида цинка(II).
6. Смесь оксидов цинка и магния массой 0.3 г растворили в 1 М растворе соляной кислоты объемом 17 мл. Избыток кислоты нейтрализовали 0.5 М раствором гидроксида натрия объемом 8 мл. Вычислите массовую долю оксида цинка в смеси.
7. Составьте уравнения следующих реакций с участием цинка:
Какие химические свойства цинка проявляются в этих реакциях? Предложите способы химической идентификации образующихся в этих реакциях газов.
8. Определите, к каким соединениям цинка, кадмия и ртути относятся следующие тривиальные и минералогические названия: сулема, киноварь, каломель, цинковые белила, цинковый купорос, госларит, кадмиевые шениты, гремучая ртуть. Напишите их химические формулы.
9. В лаборатории оказались без этикеток банки с твердыми солями ZnCl2, CdCl2и HgCl2. Все эти вещества имеют одинаковую окраску (укажите какую). Какой способ идентификации этих веществ Вы можете предложить, если в Вашем распоряжении имеются только вода и аналитические весы.
10. Составьте уравнения следующих реакций, протекающих в водном растворе.
Какие химические свойства соединений ртути(I) и ртути(II) проявляются в этих реакциях?
11. Какова масса ZnSO4∙7H2O, полученного при взаимодействии цинка с 200 мл 20% раствора H2SO4 (ρ = 1,14 г/см).
12. Массу сулемы 10,8 г обработали 200 мл раствора аммиака концентрации 0,2 моль/ дм3. Вычислите массу осадка, выделившегося в результате реакции.
Подготовьте доклад, реферат или презентацию на тему:
· Важнейшие соединения цинка и его аналогов.
· Комплексные соединения цинка, кадмия и ртути.
· Биологическая роль и применение в фармации и медицине соединений d-элементов.
· Соединения ртути. Оксиды ртути. Соли ртути.
· Качественные реакции на катионы цинка. Качественные реакции на катионы ртути.
· Биологическая роль цинка, влияние соединений ртути на живые организмы. Применение соединений ртути и цинка в медицине, в народном хозяйстве.
· Комплексные соединения цинка. Биологическая роль цинксодержащих ферментов.
Список рекомендуемой литературы:
1. Пустовалова Л.М., Никанорова И.Е. Неорганическая химия. Ростов-н/Д. Феникс, 2005
2. Бабков, А.В. Общая и неорганическая химия [Текст]: учебник / А.В. Бабков, Т.И. Барабанова, В.А. Попков. – М.: ГЭОТАР-Медиа, 2014. – 384 с.
Тема 2.10. Побочная подгруппа VI группы
Содержание учебного материала:Общая характеристика элементов. Строение атомов. Изменение по группе атомных радиусов и ионизационных потенциалов. Валентность и степени окисления атомов. Окислительно-восстановительные свойства соединений в разных степенях окисления атомов. Характер химических связей в соединениях.Соединения хрома. Оксиды, гидроксиды. Хроматы. Дихроматы. Окислительные свойства соединений хрома (VI).Биологическая роль хрома. Применение соединений хрома.
Основные понятия: химический элемент, атом, химическая связь, электроотрицательность, валентность,степень окисления, основные типы реакций в неорганической химии; комплексные соединения.
Основные законы химии: Периодический закон Д.И. Менделеева.
Основные теории химии:Теории строения атома, химической связи, строения неорганических соединений
Методические рекомендации: При изученииматериала необходимо отметить, какие элементы относятся к побочной подгруппе VI группы. Обратите внимание на строение электронных уровней элементов. Также рассмотрите физические и химические свойства соединений элементов.
Краткое изложение теоретических вопросов:
Цинк. Химия цинка и его соединений
Положение в периодической системе химических элементов
Цинк расположены в побочной подгруппе II группы (или в 12 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение цинка и свойства
Электронная конфигурация цинка в основном состоянии :
+30Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2
3s 3p
3d
Характерная степень окисления цинка в соединениях +2.
Физические свойства
Цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (быстро тускнеет на воздухе, покрываясь тонким слоем оксида цинка).
Нахождение в природе
Цинк играет важную роль в процессах, протекающих в живых организмах.
В природе цинк как самородный металл не встречается.
Способы получения
Цинк получают из сульфидной руды. На первом этапе руду обогащают, повышая концентрацию сульфидов металлов. Сульфид цинка обжигают в печи кипящего слоя:
2ZnS + 3O2 → 2ZnO + 2SO2
Чистый цинк из оксида получают двумя способами.
ZnO + С → Zn + CO
Далее цинк очищают от примесей.
При это получаемый раствор сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу.
При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %).
Качественные реакции
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl
При дальнейшем добавлении щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката:
Химические свойства
1.1. Цинк реагируют с галогенами с образованием галогенидов:
Реакция цинка с иодом при добавлении воды:
1.2. Цинк реагирует с серой с образованием сульфидов:
Zn + S → ZnS
1.4. С азотом цинк непосредственно не реагирует.
1.5. Цинк непосредственно не реагирует с водородом, углеродом, кремнием и бором.
1.6. Цинк взаимодействует с кислородом с образованием оксида:
2Zn + O2 → 2ZnO
2. Цинк взаимодействует со сложными веществами:
2.1. Цинк реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
Zn 0 + H2 + O → Zn +2 O + H2 0
2.2. Цинк взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.). При этом образуются соль и водород.
Zn + 2HCl → ZnCl2 + H2↑
Демонстрация количества выделения водорода при реакции цинка с кислотой:
Цинк реагирует с разбавленной серной кислотой:
Порошковый цинк реагирует с концентрированной серной кислотой с образованием сероводорода, сульфата цинка и воды:
2.5. Цинк – амфотерный металл, он взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:
Zn + 2KOH + 2H2O = K2[Zn(OH)4] + H2
Цинк реагирует с расплавом щелочи с образованием цинката и водорода:
В отличие от алюминия, цинк растворяется и в водном растворе аммиака:
Zn + CuO → Cu + ZnO
Еще пример : цинк восстанавливает медь из раствора сульфата меди (II):
CuSO4 + Zn = ZnSO4 + Cu
И свинец из раствора нитрата свинца (II):
Восстановительные свойства цинка также проявляются при взаимодействии его с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатами, соединениями хрома (VI):
Оксид цинка
Способы получения
Оксид цинка можно получить различными методами :
1. Окислением цинка кислородом:
2Zn + O2 → 2ZnO
2. Разложением гидроксида цинка при нагревании:
3. Оксид цинка можно получить разложением нитрата цинка :
Химические свойства
1. При взаимодействии оксида цинка с основными оксидами образуются соли-цинкаты.
Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката:
3. Оксид цинка не взаимодействует с водой.
ZnO + H2O ≠
5. Оксид цинка взаимодействует с растворимыми кислотами с образованием солей.
ZnO + 2HCl = ZnCl2 + H2O
ZnO + С(кокс) → Zn + СО
ZnO + СО → Zn + СО2
7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Гидроксид цинка
Способы получения
1. Гидроксид цинка можно получить пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоцинката натрия:
Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить исходное вещество Na2[Zn(OH)4] на составные части: NaOH и Zn(OH)2. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Zn(OH)2 не реагирует с СО2, то мы записываем справа Zn(OH)2 без изменения.
2. Гидроксид цинка можно получить действием недостатка щелочи на избыток соли цинка.
Химические свойства
Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката:
4. Г идроксид цинка разлагается при нагревании :
Соли цинка
Нитрат и сульфат цинка
Нитрат цинка при нагревании разлагается на оксид цинка, оксид азота (IV) и кислород:
Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинка, сернистый газ и кислород:
Комплексные соли цинка
Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.
Na2[Zn(OH)4] разбиваем на NaOH и Zn(OH)2
Свойства всего комплекса можно определять, как свойства этих отдельных соединений.
Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:
А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.
Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:
Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:
Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:
Гидролиз солей цинка
Растворимые соли цинка и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
I ступень: Zn 2+ + H2O = ZnOH + + H +
II ступень: ZnOH + + H2O = Zn(OH )2 + H +
Более подробно про гидролиз можно прочитать в соответствующей статье.
Цинкаты
Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:
Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.
Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.
Na2ZnO2 разбиваем на Na2O и ZnO
Тогда нам станет очевидно, что цинкаты реагируют с кислотами с образованием солей цинка :
Под действием избытка воды цинкаты переходят в комплексные соли:
Сульфид цинка
Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):
ZnS + 2HCl → ZnCl2 + H2S
Под действием азотной кислоты сульфид цинка окисляется до сульфата:
(в продуктах также можно записать нитрат цинка и серную кислоту).
Концентрированная серная кислота также окисляет сульфид цинка:
При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:
Z nS + 4NaOH + Br2 = Na2[Zn(OH)4] + S + 2NaBr