Доказать что среднее арифметическое больше среднего геометрического
Доказать что среднее арифметическое больше среднего геометрического
Зачастую в средних класах мы пользуемся известным выражением о том, что среднее арифметическое двух неотрицательных чисел больше чем среднее геометрические их значение:
Доказывается неравенство достаточно просто. Умнажаем обе части на 2 и переносим правую честь влево:
Что и требовалось доказать.
Для двух положительных чисел оно имеет следующий вид (общий случай для n чисел):
Пусть a, b ∈ R, тогда иммет место неравенство:
Докажем его. Покажем, что среднее геометрическое больше, чем среднее гармоническое.
Что и требовалось доказать.
Соотношение между средним арифметическим и средним геометрическим рассматривалось выше. Докажем, что среднее квадратическое больше среднего арифметического:
√ (a 2 + b 2 ) / 2 ≥ (a + b) / 2; так как справа положительное число, подносим в квадрат обе части:
(a 2 + b 2 ) / 2 ≥ (a 2 + 2ab + b 2 ) / 4; переносим все в левую часть, умножаем на 4:
Что и требовалось доказать.
Неравенство имеет место для n чисел и звучит так:
На данный момент в базе присутствует информация о 1847 великих математиках.
Для ознакомления доступны 48 книг.
Добавлен материал «Показательные уравнения и неравенства», в котором заполнены разделы «Теория» и «Методы решений». В ближайшее время ожидайте задачи по этому материалу.
Неравенство о среднем арифметическом и среднем геометрическом
Неравенство о среднем арифметическом и среднем геометрическом (неравенство Коши)
Среднее арифметическое n положительных чисел не меньше их среднего геометрического:
причём равенство достигается тогда и только тогда, когда
Частный случай этого неравенства, связывающий среднее арифметическое и среднее геометрическое двух положительных чисел, известен с древних времён. Чаще всего его доказывают, используя геометрическую интерпретацию.

Построим окружность с диаметром AB=a+b.
Из произвольной точки C окружности проведём к диаметру перпендикуляр CD.
По свойству прямоугольного треугольника, высота, проведённая к гипотенузе, равна среднему геометрическому между проекциями катетов на гипотенузу:
Соединим точку C с центром окружности, точкой O. CO — радиус, значит, он равен половине диаметра:
то есть длина CO равна среднему арифметическому a и b.
В прямоугольном треугольнике COD CD — катет, CO — гипотенуза.
Так как гипотенуза всегда больше катета, CO>CD, следовательно, среднее арифметическое a и b больше их среднего геометрического.

если AO=BO, то есть a=b.
(так как a>0), и и ф этом случае среднее арифметическое a и b равно их среднему геометрическому.
Таким образом, среднее арифметическое положительных чисел a и b не меньше их среднего геометрического.
В общем случае неравенство было доказано Коши.
Различные средние положительных. Неравенство Коши
Главная > Документ
| Информация о документе | |
| Дата добавления: | |
| Размер: | |
| Доступные форматы для скачивания: |
Соотношение между средними величинами.
Сравнение среднего арифметического и среднего геометрического.
Применим формулу «квадрат разности»:
Прибавим к обеим частям неравенства 4ав :
Применим формулу «квадрат суммы»:
Разделим обе части неравенства на 4 :

Т
Получили искомое выражение.
Сравнение среднего арифметического и среднего квадратичного.
Для доказательства 
Сравнение среднего гармонического и среднего геометрического.
Докажем, что среднее гармоническое не больше среднего геометрического, то есть 
Таким образом мы доказали одно из важнейших неравенств, связанных со средними:

Дано: окр. (О;ОА); AD = a ; BD = b
Доказать:
А


угол АСВ – вписанный
дуга АКВ = 180° значит, угол АСВ = 90 ° (по свойству вписанного угла)
Т
(по общему острому углу)
2) ∆АВС подобен ∆ CBD
4) 





Поэтому 
Это неравенство можно доказать и другим способом.
Дано: ABCD – прямоугольный, AD = a, AB = b, AK – биссектриса угла ВАD.
Доказать:
АК – биссектриса, следовательно, 










∆ AKD – равнобедренный, так как KD ┴ AD, 
4)
Очевидно, что 





то есть среднее геометрическое не больше среднего арифметического.
Сравнение среднего квадратичного и среднего арифметического.
Средние величины можно находить для любого количества положительных чисел 


в каждом из которых знак равенства достигается лишь в случае, когда 
Самым важным и значимым из этих неравенств является неравенство о среднем арифметическом и среднем геометрическом, которое носит название неравенства Коши.
Замечательные пределы, порождаемые классическими средними.
Например, взяв среднее геометрическое и среднее арифметическое и отправляясь от чисел 1 и 3, получаем
В этом примере последовательности 

Арифметико – гармоническое среднее.
Пусть выбранная пара средних – это среднее гармоническое и среднее арифметическое; таким образом, члены последовательностей 





Рассмотрим среднее гармоническое, среднее геометрическое и среднее арифметическое

Отсюда следует, что

То есть последовательность 

Таким образом, обе последовательности монотонны и ограничены, следовательно, они имеют пределы. Пусть 

Так как 




Поэтому 
Арифметико – гармоническое среднее совпадает со средним геометрическим.


и далее все знаки стабилизируются:

Арифметико – геометрическое среднее.
Четырнадцатилетний карл Фридрих Гаусс обнаружил на числовых примерах, что при вычислении последовательностей 



эти последовательности очень быстро сближаются.
Их общий предел называется арифметико – геометрическим средним чисел a и b и обозначается через 

Геометрическо – гармоническое среднее.
Если строить последовательности 



то в этом случае они сходятся к общему пределу. Назовём его геометрическо – гармоническим средним a и b и обозначим его через 



Среднее геометрическое против среднего арифметического
Разница между средним геометрическим и средним арифметическим
Среднее арифметическое и среднее геометрическое являются инструментами, широко используемыми для расчета доходности инвестиций для инвестиционных портфелей в мире финансов. Люди используют среднее арифметическое, чтобы сообщать о более высокой прибыли, которая не является правильной мерой расчета прибыли на инвестиции. Поскольку окупаемость инвестиций в портфель по годам зависит от доходности в предыдущие годы, среднее геометрическое является правильным способом расчета окупаемости инвестиций за определенный период времени. Среднее арифметическое лучше подходит в ситуации, когда переменные, используемые для расчета среднего значения, не зависят друг от друга.
Пример: использование пригодности среднего геометрического и среднего арифметического
Что создает неправильное впечатление, что инвестор безубыточен на своих инвестициях и нет никаких потерь или прибыли. Однако более тщательный анализ дает совершенно иную картину сценария.
Среднее геометрическое возвращений
Это означает, что годовая доходность портфеля была отрицательной 13, 40%. Инвестиционная позиция после двух лет выглядит следующим образом:
2. Когда нужно вычислить среднее значение переменных, которые не зависят друг от друга, арифметика означает подходящий инструмент для вычисления среднего. Среднее количество баллов студента по 5 предметам может быть рассчитано по среднему арифметическому, так как баллы студента по различным предметам не зависят друг от друга.
Сравнение геометрического среднего с средним арифметическим (инфографика)
Ниже приведена верхняя 8 разница между средним геометрическим и средним арифметическим
Ключевые различия между средним геометрическим и средним арифметическим
Давайте обсудим некоторые основные различия между средним геометрическим и средним арифметическим:
Среднее геометрическое и среднее арифметическое Сравнительная таблица
Давайте посмотрим на 8 лучших Сравнение среднего геометрического и среднего арифметического































