Доказать что три биссектрисы треугольника пересекаются в одной точке
Общие сведения
Треугольник — геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и отрезков, соединяющих их. Точки имеют другое название — вершины. Обозначается треугольник символом Δ, после которого идут 3 латинских буквы. Например, ΔMNO. Допускается использовать и русские литеры, но злоупотреблять этим не стоит.
В высших учебных заведениях преподаватели требуют от студентов международное обозначение. Кроме того, большинство программных продуктов и онлайн-сервисов воспринимают только латинские символы.
Существует определенная классификация Δ, на основании которой доказываются теоремы, выводятся формулы, свойства и решаются задачи. В последнем случае следует правильно производить идентификацию, чтобы избежать ошибок при расчетах.
Классификация треугольников
Необходимо отметить, что Δ различаются между собой по некоторым критериям.
Они бывают нескольких типов:
В первом случае стороны фигуры не равны между собой. Чтобы идентифицировать прямоугольный треугольник, необходимо рассмотреть его углы. Если один из них является прямым (равен 90 градусам), такая фигура называется прямоугольной. В третьем виде основным критерием считается наличие двух, равных между собой сторон.
В равностороннем треугольнике все стороны равны между собой. Математики его называют «правильным». Он обладает важным свойством — вокруг него можно описать окружность. Пятый тип определяет наличие тупого угла, градусная мера которого больше 90. Если фигура является остроугольной, это значит, что все 3 его угла меньше 90, т. е. являются острыми.
Один треугольник может относиться к нескольким типам. Например, прямоугольный Δ может быть равнобедренным на основании свойства геометрии: если Δ является равнобедренным, то углы (∠), образованные боковыми сторонами с основанием, равны между собой. В этом случае их градусные меры эквивалентны 45, поскольку сумма ∠ любого Δ составляет 180. Следовательно, 180 — 90 = 2k, где неизвестная величина «к» соответствует углу при основании.
Решая уравнение, можно получить искомое значение угла: k = 45. Исходя из вычислений, треугольник является прямоугольным и равнобедренным.
Дополнительные элементы
У любого Δ существуют определенные дополнительные элементы, необходимые при построении чертежей или схематических рисунков, доказательства теорем и решения задач по геометрии.
К ним относятся:
Биссектриса — отрезок (прямая), проходящий через вершину Δ и делящий угол на 2 равные части. Медиана — единственный отрезок для каждой вершины, соединяющий ее с серединой стороны, на которую он опущен.
Высотой является перпендикуляр, опущенный из вершины на противоположную сторону.
В равнобедренном и равностороннем треугольниках биссектриса является медианой и высотой. В последнем случае их можно провести всего 3.
Теорема о биссектрисах
Теорема о биссектрисах треугольника звучит таким образом: в любом Δ биссектрисы пересекаются только в одной точке — инцентре фигуры. Для доказательства нужно построить произвольный ΔКLМ, а затем следовать по такому алгоритму:
Необходимо доказать, что третья биссектриса (МV), проведенная из вершины М, проходит через точку W. Это делается таким образом:
Далее следует рассмотреть ∠М. Следовательно, что координата точки W равноудалена от вершины М. На основании признака биссектрисы, W лежит на МV, поскольку W — точка пересечения биссектрис треугольника КLМ. Утверждение доказано.
Свойства и соотношения
На основании теоремы о биссектрисах Δ были получены некоторые важные свойства, которые рекомендуется применять при решении задач и доказательства других утверждений:
При решении задач нужно находить их длину (L).
Для удобства необходимо обозначить стороны таким образом: КМ = d, КL = e и LМ = f, чтобы воспользоваться следующими формулами через известные параметры треугольника:
Соотношения позволяют найти не только длины Lk, Lm и Ll, но и другие параметры треугольников. Следует отметить, что углы во второй группе формул соответствуют биссектрисам, исходящим из них.
Таким образом, для решения задач на нахождение длины биссектрис необходимо знать теорию, доказательство теоремы, свойства, а также основные соотношения.
Биссектриса угла
Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы угла треугольников и других фигур.
Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек…
Нам же знание этих свойств поможет решить некоторые задания ЕГЭ!
Биссектриса угла — коротко о главном
Биссектриса угла — это линия, делящая угол пополам.
Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.
Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.
Теорема 1. Три биссектрисы в треугольнике пересекаются в одной точке, и эта точка – центр вписанной в треугольник окружности.
Теорема 2. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
Теорема 3. Биссектриса угла параллелограмма отсекает равнобедренный треугольник.
Теорема 4. Биссектрисы внутреннего и внешнего углов треугольника перпендикулярны.
Теорема 5. Биссектрисы односторонних углов параллелограмма и трапеции пересекаются под прямым углом.
Теорема 6. Отношение отрезков, на которые биссектриса делит противоположную сторону, такое же, как и отношение двух сторон, между которыми эта биссектриса прошла.
А теперь подробнее…
Определение биссектрисы угла
Помнишь шутку: «Биссектриса это крыса, которая бегает по углам и делит угол пополам»?
Так вот, настоящее определение биссектрисы угла очень похоже на эту шутку — биссектриса действительно делит пополам угол (а не отрезок, например):
Биссектриса угла – это линия, делящая угол пополам.
Или еще вот такое определение биссектрисы:
Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.
А вот определение биссектрисы треугольника:
Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.
Тебе встретилась в задаче биссектриса? Постарайся применить одно (а иногда можешь и несколько) из следующих потрясающих свойств.
Биссектриса равнобедренного треугольника
Биссектриса равнобедренного треугольника, проведенная к основанию, является и медианой, и высотой.
Но представляешь, это ещё не всё. Верна ещё и обратная теорема:
Если в треугольнике биссектриса, проведённая из какого-то угла, совпадает с медианой или с высотой, то этот треугольник равнобедренный.
Мы скоро докажем обе этих теоремы, а пока твердо запомни:
Биссектриса совпадает с высотой и медианой только в равнобедренном треугольнике!
Зачем же это твердо запоминать? Как это может помочь?
А вот представь, что у тебя задача:
Дано: \( AB=5,
Найти: \( \displaystyle BC. \)
Ты тут же соображаешь, \(\displaystyle BD \) биссектриса и, о чудо, она разделила сторону \( \displaystyle AC \) пополам! (по условию…).
Если ты твердо помнишь, что так бывает только в равнобедренном треугольнике, то делаешь вывод, что AB=BC и значит, пишешь ответ: BC=5.
Здорово, правда? Конечно, не во всех задачах будет так легко, но знание обязательно поможет!
Доказательство теорем о совпадении биссектрисы с медианой и высотой в равнобедренном треугольнике
Почему в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?
Смотри: у \( \triangle ABL \) и \( \triangle CBL \) равны стороны \( AB \) и \( BC \), сторона \( BL \) у них вообще общая и \( \angle 1=\angle 2\). (\( BL \) – биссектриса!)
И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними.
Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему «Треугольник») и заключаем, что \( \triangle ABL=\triangle CBL \), а значит \( AL \)= \( CL \) и \( \angle 3=\angle 4 \).
\( AL \) = \( CL \) – это уже хорошо – значит, \( BL \) оказалась медианой.
А вот что такое \( \angle 3=\angle 4 \)?
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Будет немного сложнее, но пока мы отвлечемся на термины — повторим что такое биссектриса, медиана и высота, чем они похожи и чем они отличаются.
Биссектриса, медиана, высота — определения и отличия
Кстати, а помнишь ли ты все эти термины? Чем они отличаются друг от друга?
Если нет, не страшно. Сейчас разберемся.
Чем биссектриса, медиана и высота похожи между собой?
Биссектриса, медиана и высота – все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной.
Чем биссектриса, медиана и высота отличаются между собой?
Вернемся к нашим баранам — к свойствам биссектрисы…
Угол между биссектрисами любого треугольника
B \( \triangle ABC \)проведем две биссектрисы \( AO \)и \( OC \).
Они пересеклись. Какой же угол получился у точки \( O \)?
Применим этот потрясающий факт. С одной стороны, из \( \triangle ABC \):
\( \angle A+\angle B+\angle C=180<>^\circ \), то есть \( \angle B=180<>^\circ \text< >-\text< >\left( \angle A+\angle C \right) \).
Теперь посмотрим на \( \triangle AOC \):
\( \angle 2+\angle 6+\angle 3=180<>^\circ \)
Но биссектрисы, биссектрисы же!
Значит \( \left( \triangle AOC \right) \)
Теперь через буквы
Получилось, что угол между биссектрисами двух углов зависит только от третьего угла!
Ну вот, две биссектрисы мы посмотрели. А что, если их три?! Пересекутся ли они все в одной точке?
Биссектрисы треугольника
Из школы известно, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанной в этот треугольник окружности.
Теорема 1. Биссектриса угла А треугольника АВС точкой пересечения биссектрис делится в отношении , считая от стороны, где а, b, с – длины сторон ВС, АС, АВ соответственно.
Доказательство. Пусть АА1 и ВВ1 – биссектрисы углов А и В соответственно в треугольнике АВС, L – их точка пересечения, а, b, с – длины сторон ВС, АС, АВ соответственно (рис.62). Тогда по теореме о биссектрисе, применённой к треугольнику АВС будем иметь
=
, или b ВА1 = ас – с ВА1, или ВА1 (b + с) = ас, значит, ВА1 =
с. По этой же теореме, примененной к треугольнику АВА1 получим А1L : LА =
: с, или
=
.
Теорема 2. Если L – центр вписанного в треугольник АВС круга, то
Ð АLВ = 90° + Ð С.
Доказательство. Учитывая, что сумма углов треугольника равна 180° и что центр L вписанного круга является точкой пересечения биссектрис треугольника, будем иметь (рис. 62):
Ð АLВ = 180° – (Ð АВL + Ð ВАL) = 180° – (Ð АВС + Ð ВАС) =
= 180° – (180° – Ð С) = 180° – 90° + Ð С = 90° +
Ð С.
Теорема 3. Если L – точка на биссектрисе угла С треугольника АВС такая, что Ð АLВ = 90° + Ð С, то L – центр вписанного в треугольник АВС круга.
Доказательство. Докажем, что ни одна из точек L1 между C и L не может являтся центром вписанного круга (рис. 62а).
Имеем Ð АL1С1 Ð АLВ = 90° +
Ð С и снова не выполнено условие признака центра вписанного круга. Значит, центром вписанного круга является точка L.
Теорема 4. Расстояние от вершины треугольника до точки касания вписанного круга со стороной, проходящей через эту вершину, равно полупериметру этого треугольника, уменьшенному на противоположную сторону.
Доказательство.Пусть А1, В1, С1 – точки касания вписанного круга со сторонами треугольника АВС (рис. 63), а, b, с – длины сторон ВС, АС, АВ соответственно.
Тогда а + а = а + b + с – 2 х, или 2 а = 2 р – 2 х, или х = р – а.
Теорема 5.В любом треугольнике АВС через точку L пересечения биссектрис двух внешних его углов проходит биссектриса третьего угла, при этом точка L находится на одинаковых расстояниях от прямых, содержащих стороны треугольника.
Доказательство. Пусть L – точка пересечения двух внешних углов В и С треугольникаа АВС (рис. 64). Поскольку каждая точка биссектрисы находится на одинаковом расстоянии от сторон угла, то точка L находится на одинаковом расстоянии от прямых АВ и ВС, так как она принадлежит биссектрисе ВL. Она же находится на одинаковом расстоянии от прямых ВС и АС, так как принадлежит биссектрисе СL. Поэтому точка L находится на одинаковом расстоянии прямых АВ, АС и ВС. Поскольку точка L находится на одинаковом расстоянии от прямых АВ и АС, то АО – биссектриса угла ВАС.
Окружность, которая касается стороны треугольника и продолжений двух других сторон, называют вневписанной в этот треугольник окружностью.
Следствие 1. Центры вневписанных в треугольник окружностей находятся в точках пересечения пар биссектрис его внешних углов.
Теорема 6. Радиус вписанной в треугольник окружности равен отношению стороны этого трегольника и косинуса половины противолежащего угла, умноженному на синусы половин двух остальных углов:
r = sin
sin
.
Доказательство. Пусть L – центр вписанной в треугольник АВС окружности, А1 – точка её касания со стороной ВС, а – длина стороны ВС (рис. 65). По теореме синусов, применённой к треугольнику ВLС, получим
=
, откуда ВL =
=
= =
.
Поэтому из прямоугольного треугольника ВLА1 имеем
r = LA1 = BL sin =
sin
sin
.
Определение и свойства биссектрисы угла треугольника
В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.
Определение биссектрисы угла треугольника
Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.
Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.
Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.
Внешней называется биссектриса угла, смежного с внутренним углом треугольника.
Свойства биссектрисы треугольника
Свойство 1 (теорема о биссектрисе)
Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):
Свойство 2
Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.
Свойство 3
Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).
Свойство 4
Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):
BD 2 = AB ⋅ BC – AD ⋅ DC
Свойство 5
Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.
Пример задачи
Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.
Решение
Нарисуем чертеж согласно условиям задачи.
Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.
Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):
Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29
Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.
Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.