Доказать что векторы компланарны
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №18. Компланарные векторы. Векторный метод решения задач
Перечень вопросов, рассматриваемых в теме:
— какие векторы называются компланарными и их изображение на чертежах
-определение компланарных векторов.
— признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов.
— основы векторного метода решения задач.
Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса. 2016. С.88-93.
Теоретический материал для самостоятельного изучения:
Давайте вспомним основные определения по теме «Векторы». В этом поможет следующее задание: установите соответствие между понятием и его определением.
Противоположно направлены и их длины равны.
Сонаправлены и их длины равны.
Лежат на одной или параллельных прямых
Определение2.Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Рассмотрим некоторые случаи:
1 случай. Любые два вектора всегда будут компланарными, ведь через них
можно провести прямые, а через две прямые всегда можно провести
единственную плоскость.
2 случай. Три вектора будут компланарными если среди них есть пара коллинеарных
векторов. Тогда через один из коллинеарных векторов и вектор не коллинеарный ему
можно провести плоскость. А для второго из коллинеарных векторов легко
изобразить равный в этой плоскости.
3 случай. Если хотя бы один из трёх векторов является нулевым, то эти три вектора компланарны
Из планиметрии: Любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.
Теорема. Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.
Часть 2. Векторный метод решения задач
Векторный метод решения задач – один из наиболее общих методов решения геометрических задач. Векторное решение стереометрических задач значительно проще их решения средствами элементарной геометрии.
Рассмотрим следующую задачу: Доказать, что прямая, проведенная через середины оснований трапеции, проходит через точку пересечения продолжений боковых сторон.
Докажем, что точка О лежит на прямой МN.
Условие задачи переводится на «векторный» язык. После такого перевода осуществляются алгебраические вычисления с векторами, а затем полученное снова «переводится» на «геометрический» язык.
Решением задач векторным методом занимались ученые: Уильман Гамильтон Иога́нн Берну́лли, Пьер Ферма, Рене Декарт, Леонард Эйлер.
Примеры и разбор решения заданий тренировочного модуля:
Задача. В параллелепипеде АВСDА1В1С1D1 М —точка пересечения диагоналей грани A1B1C1D1, точка K — середина ребра ВВ1. Докажите, что прямые А1В1, KМ и ВС1 параллельны некоторой плоскости.
Решение. Введем векторы: 



Разложим векторы 





Тогда векторы 


Компланарные векторы
Урок 37. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Компланарные векторы»
Ранее мы ввели понятие вектора в пространстве, понятие равных векторов, правила сложения и вычитания векторов, а также произведение вектора на число.
И все теоретические аспекты векторов в пространства практически совпадают с теорией векторов на плоскости. За исключением правила многоугольника сложения нескольких векторов. Многоугольник сложения в пространстве может быть и пространственным, то есть не все его вершины лежат в одной плоскости.
Сегодня мы с вами познакомимся с существенным и одним из главных отличий векторов на плоскости и векторов в пространстве. Мы введём понятие компланарных векторов.
Определение. Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.
Но в связи с тем, что от любой точки пространства можно отложить вектор равный данному, и притом только один, можно это определение переформулировать так.
Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Понятно, что любые два вектора всегда будут компланарными, ведь через них можно провести прямые, а через две прямые всегда можно провести единственную плоскость.
Если же рассмотреть три вектора, то они могут быть как компланарными, так и некомпланарными.
Компланарными они будут в том случае, когда среди них есть пара коллинеарных векторов.
Тогда через один из коллинеарных векторов и вектор не коллинеарный ему можно провести плоскость. А для второго из коллинеарных векторов легко изобразить равный в этой плоскости.
Так мы получаем, что два вектора всегда будут компланарными, а три вектора будут компланарными, если среди них есть пара коллинеарных векторов.

Компланарны ли векторы?
а) 

б) 

Первой рассмотрим тройку 
Через векторы 

Рассмотрим следующую тройку векторов. 
В этом задании мы, пользуясь определением, выяснили компланарны данные тройки векторов или нет.
Помимо определения компланарных векторов есть ещё и признак компланарности трёх векторов.
Если вектор 






Докажем данный признак.
Рассмотрим два неколлинеарных вектора 

Очевидно, что в этой же плоскости лежат векторы x 

По правилу параллелограмма построим вектор суммы векторов x 





Так мы доказали признак компланарности трёх векторов. Но справедливо и обратное утверждение, которое можно считать свойством трёх компланарных векторов.
Если векторы 







Итак, воспользуемся тем, векторы компланарны, то есть лежат в одной плоскости. А из курса планиметрии известно, что любой вектор плоскости можно разложить по двум неколлинеарным векторам. Как раз векторы 

Тогда отложим векторы 


Вектор 








Отсюда получаем, что вектор 


Тем самым мы смогли разложить вектор 


Что и требовалось доказать.
Для параллелепипеда ABCDA1B1C1D1 среди данных троек векторов найти компланарные.
Первой рассмотрим тройку векторов 
Все эти векторы коллинеарны, так как являются противоположными рёбрами параллелепипеда. А для компланарности трёх векторов достаточно коллинеарности хотя бы двух из них (в начале урока мы рассматривали такой случай). Поэтому можно утверждать, что данные векторы компланарны.
Далее рассмотрим векторы 


Векторы 


Следующей рассмотрим тройку векторов 


Среди них есть пара коллинеарных векторов, 

Осталось рассмотреть тройку векторов 


В плоскости ABCD лежит вектор 



Так, пользуясь определением, мы нашли две тройки компланарных векторов.
Задача. 








Итак, сначала проведём доказательство.
Пользуясь правилом многоугольника сложения нескольких векторов в пространстве, можно записать, что 

Сложим покомпонентно эти два равенства.
Векторы 



Тогда мы получаем, что 
Что и требовалось доказать.
Теперь ответим на вопрос, компланарны ли векторы 


Разделим обе его части равенства, доказанного выше, на 2.
Так мы записали разложение вектора 



Тогда по признаку компланарных векторов, данные векторы компланарны.
Подведём итоги нашего урока.
Сегодня мы ввели понятие компланарных векторов.
Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.
На практике удобнее использовать такую формулировку: векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Так же мы выяснили, что любые два вектора всегда компланарны, а вот три вектора могут быть как компланарными, так и не компланарными.
В связи с этим мы доказали признак компланарности векторов.
Если вектор 





Справедливо также и обратное утверждение.
Если векторы 

































