Доказательство что в равнобедренной трапеции диагонали равны доказательство
Трапеция
Определения
Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.
Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.
Теоремы: свойства трапеции
2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.
Доказательство
Определение
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Теорема
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем параллельность.
\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]
Теорема: свойство произвольной трапеции
Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
2) Докажем, что точки \(N, O, M\) лежат на одной прямой.
\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac
Определения
Трапеция называется прямоугольной, если один из ее углов – прямой.
Трапеция называется равнобедренной, если ее боковые стороны равны.
Теоремы: свойства равнобедренной трапеции
1) У равнобедренной трапеции углы при основании равны.
2) Диагонали равнобедренной трапеции равны.
3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.
Доказательство
2)
Теоремы: признаки равнобедренной трапеции
1) Если у трапеции углы при основании равны, то она равнобедренная.
2) Если у трапеции диагонали равны, то она равнобедренная.
Доказательство
«Трапеция». 8-й класс
Разделы: Математика
Класс: 8
Ход урока
I. Организационный момент.
II. Актуализация знаний.
Ключевое слово кроссворда – является темой нашего урока.
III. Новый материал.
Трапеция – (от греч. trapezion, букв. – столик).
Трапеция – четырёхугольник, у которого две стороны параллельны, а две другие – непараллельные. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
Равнобедренная – трапеция, у которой равны боковые стороны.
Прямоугольная – трапеция, один из углов которой прямой.
Средняя линия трапеции.
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Группы с четными номерами – исследуют диагонали равнобедренной трапеции. Группы с нечетными номерами – исследуют углы равнобедренной трапеции.
Выслушать и обсудить результаты исследования, на доске и в тетрадях записать решения.
Свойства равнобедренной трапеции.
Теорема. В равнобедренной трапеции углы при каждом основании равны.
Проведем СЕ АВ.
ABCD – параллелограмм (АВ СЕ, ВС
AD).
CD = AB = CE, СDE – равнобедренный,
СDЕ =
СЕD.
АВ СЕ, тогда
СЕD =
ВАЕ,
СDЕ =
СЕD =
ВАЕ.
ABC = 180° –
СDЕ = 180° –
ВАЕ =
BCD.
Теорема. В равнобедренной трапеции диагонали равны.
ABC =
DСВ (АВ = С, ВС – общая сторона,
АВС =
ВСD) тогда АС = ВD.
Сформулируйте утверждения, обратные свойствам, и выясните их справедливость.
Признаки равнобедренной трапеции.
Выслушать и обсудить результаты исследования, на доске и в тетрадях записать решения.
1. Если углы при основании трапеции равны, то она равнобедренная.
Проведем ЕС АВ.
ABCЕ – параллелограмм, тогда АВ СЕ,
А =
СЕD,
СЕD – равнобедренный (
D =
СЕD), тогда СЕ = СD.
АВ = СЕ = СD, тогда АВСD – равнобедренная трапеция.
2. Если диагонали трапеции равны, то она равнобедренная.
Проведем СК ВD.
ВСКD – параллелограмм (т.к. СК ВD, ВС
АК).
АСК – равнобедренный, т.к. АС = ВD = СК,
САD =
СDА.
СК ВD,
ВDА =
СКD, тогда
САD =
СКD.
АВD =
DСА, т.к. АС=ВD, АD – общая сторона,
САD =
СКD, тогда АВ = СD, т.е. АВСD – равнобедренная трапеция.
Равнобедренная трапеция — свойства, признаки и формулы
Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.
Определение, признаки и элементы трапеции
Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.
Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.
Свойства равнобедренной трапеции
Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:
Первый отрезок АЕ будет равен сумме оснований, деленной на 2, а второй отрезок ЕВ — разности, разделенной на 2:
Периметр равнобедренной трапеции
Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.
В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.
Как найти стороны трапеции?
Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.
В первую очередь можно найти стороны с помощью средней линии:
Есть альтернатива, если вам известны высота и угол при большем основании:
Средняя линия
Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части.
У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.
Высота трапеции
Высотой трапеции называется самый короткий по длине отрезок, который продолжается ровно от одного основания до другого. Он выполняет своеобразную вспомогательную роль в задачах вплоть до 10 класса с неизвестными сторонами и в тех задачах, где нужно дополнить фигуру до прямоугольника, например.
Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.
Диагональ трапеции
Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.
А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:
Площадь равнобедренной трапеции
Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.
Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.
Это самые базовые формулы, поэтому очень часто используются в различных задачах.
Вписанная и описанные окружности
Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны.
Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.
А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.
Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:
Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами.
Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.
Свойства равнобедренной (равнобокой) трапеции
В данной публикации мы рассмотрим определение и основные свойства равнобедренной трапеции.
Напомним, трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны, т.е. AB = CD.
Свойство 1
Углы при любом из оснований равнобедренной трапеции равны.
Свойство 2
Сумма противоположных углов трапеции равняется 180°.
Для рисунка выше: α + β = 180°.
Свойство 3
Диагонали равнобедренной трапеции имеют одинаковую длину.
Свойство 4
Высота равнобедренной трапеции BE, опущенная на основание большей длины AD, делит его на два отрезка: первый равняется половине суммы оснований, второй – половине их разности.
Свойство 5
Отрезок MN, соединяющий середины оснований равнобокой трапеции, перпендикулярен этим основаниям.
Прямая, проходящая через середины оснований равнобедренной трапеции, называется ее осью симметрии.
Свойство 6
Вокруг любой равнобедренной трапеции можно описать окружность.
Свойство 7
Если сумма оснований равнобокой трапеции равно удвоенной длине ее боковой стороны, в нее можно вписать окружность.
Радиус такой окружности равняется половине высоты трапеции, т.е. R = h/2.
Примечание: остальные свойства, которые применимы ко всем видам трапеций, приведены в нашей публикации – “Что такое трапеция: определение, виды, свойства”.
Трапеция. Свойства трапеции
Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).
Свойства трапеции
1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.
3. Треугольники и
, образованные отрезками диагоналей и основаниями трапеции, подобны.
Коэффициент подобия –
Отношение площадей этих треугольников есть .
4. Треугольники и
, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
Свойства и признаки равнобедренной трапеции
1. В равнобедренной трапеции углы при любом основании равны.
2. В равнобедренной трапеции длины диагоналей равны.
3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.
4. Около равнобедренной трапеции можно описать окружность.
5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Вписанная окружность
Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка —
и
, то
Площадь
или
где
– средняя линия
Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
трапеция АВСД, ВС – 6, АД – 9, диагонали перетинаються в точке О. Найти ОД и ОВ, якщо ОД-ВО=2.
Помогите пожалуйста в решении такой задачи.Найдите радиус окружности вписанной в равнобедренную трапецию если основание 8,2 см. Заранее спасибо!
Виталий, чего-то не хватает в условии. Дайте точную формулировку.
Помогите пожалуйста решить задачу. Найти площадь равнобедренной трапеции если диагональ делит острый угол пополам и среднюю линию на отрезки 23 и 13.Большое спасибо.
Пусть – меньшее и большее основания соответственно.
, так как отрезок средней линии трапеции, равный 13, является средней линией треугольника с основанием
. Аналогично
Далее замечаем, что треугольник – равнобедренный, тогда
Опускаем из и
высоты к
. Из одного из образовавшихся прямоугольных треугольников находим высоту
по теореме Пифагора:
Наконец,
Помогите пожалуйста решить задачку. Дана равнобедренная трапеция АВСD (AD параллельна BC). Известно,что AD>BC. На её описанной окружности отмечена точка Е, такая, что BE перпендикулярна AD. Докажите, что АЕ+ВС>DE.
прошу подсказать решение:
Дана трапеция АВСД (не равнобедренная!). Диагонали АС и ВД перпендикулярны, причем АС=48см. Средняя линия MN=25см.
Высота ВН опущена на основание АД(перпендикулярна ему)
Найти Высоту ВН
Перенесите диагональ параллельно самой себе в точку
. У полученного прямоугольного треугольника
(
– точка на
) известна гипотенуза (50) и катет (48). Находим второй катет (14) – это
( или
).
Теперь вам просто надо найти высоту прямоугольного треугольника , проведенную к гипотенузе. Все для этого есть!
спасибо большое, оказывается все очень просто!
Елена Юрьевна,добрый вечер.Поздравляю Вас с профессиональным
праздником! Помогите пожалуйста разобраться в задаче для 8 класса. В учебнике мало информации. Заранее благодарю Вас.
Докажите, что из одинаковых плиток, имеющих форму равнобедренной трапеции, можно сделать паркет, полностью покрывающий любую часть плоскости.
Виктория,спасибо!
Можно положить плитки друг к другу так, чтобы боковые стороны совпали, при этом меньшее основание одной плитки лежало бы на одной прямой с большим основанием другой плитки (а такое совпадение обязательно произойдет, так как сумма соседних углов при разных основаниях равна 180 градусам по свойству трапеции). Так можно покрыть полосу, а такими полосами покрыть и плоскость.