Докажите что abcd параллелограмм номер 5

Доказательство что ABCD-параллелограмм

Докажите что abcd параллелограмм номер 5. Смотреть фото Докажите что abcd параллелограмм номер 5. Смотреть картинку Докажите что abcd параллелограмм номер 5. Картинка про Докажите что abcd параллелограмм номер 5. Фото Докажите что abcd параллелограмм номер 5

Как доказать, что четырехугольник — параллелограмм

Как доказать, что четырехугольник — параллелограмм? Для этого можно использовать определение либо один из признаков параллелограмма.

1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.

ABCD — параллелограмм, если

Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.

это могут быть пары треугольников

2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.

3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).

Для этого можно доказать равенство одной из тех же пар треугольников.

4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.

Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.

Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.

Это — четыре основных способа доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие способы доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.

Доказательство с помощью векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *