Докажите что для параллелепипеда abcda1b1c1d1 параллельны прямые ac и a1c1
В прямоугольном параллелепипеде ABCDA1B1C1D1 через диагональ BD1 проведена плоскость α, параллельная прямой AC.
б) Найдите угол между проведённой плоскостью и плоскостью основания параллелепипеда, если AB = 5, BC = 12, CC1 = 10.
б) Пусть B1M — перпендикуляр, опущенный из вершины B1 на прямую l. Тогда B1M — ортогональная проекция наклонной BM на плоскость A1B1C1D1. По теореме о трёх перпендикулярах прямые BM и l перпендикулярны, поэтому угол BMB1 — линейный угол двугранного угла, образованного секущей плоскостью α и плоскостью A1B1C1D1.
Отрезок B1M вдвое больше высоты B1H прямоугольного треугольника A1B1C1, проведённой из вершины прямого угла, поэтому
Из прямоугольного треугольника BMB1 находим, что
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Докажите что для параллелепипеда abcda1b1c1d1 параллельны прямые ac и a1c1
В прямоугольном параллелепипеде ABCDA1B1C1D1 через диагональ BD1 проведена плоскость α, параллельная прямой AC.
б) Найдите угол между проведённой плоскостью и плоскостью основания параллелепипеда, если AB = 5, BC = 12, CC1 = 10.
б) Пусть B1M — перпендикуляр, опущенный из вершины B1 на прямую l. Тогда B1M — ортогональная проекция наклонной BM на плоскость A1B1C1D1. По теореме о трёх перпендикулярах прямые BM и l перпендикулярны, поэтому угол BMB1 — линейный угол двугранного угла, образованного секущей плоскостью α и плоскостью A1B1C1D1.
Отрезок B1M вдвое больше высоты B1H прямоугольного треугольника A1B1C1, проведённой из вершины прямого угла, поэтому
Из прямоугольного треугольника BMB1 находим, что
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Докажите что для параллелепипеда abcda1b1c1d1 параллельны прямые ac и a1c1
В прямоугольном параллелепипеде ABCDA1B1C1D1 через диагональ BD1 проведена плоскость α, параллельная прямой AC.
б) Найдите угол между проведённой плоскостью и плоскостью основания параллелепипеда, если AB = 6, BC = 8, CC1 = 10.
б) Пусть B1M — перпендикуляр, опущенный из вершины B1 на прямую l. Тогда B1M — ортогональная проекция наклонной BM на плоскость A1B1C1D1. По теореме о трёх перпендикулярах прямые BM и l перпендикулярны, поэтому угол BMB1 — линейный угол двугранного угла, образованного секущей плоскостью α и плоскостью A1B1C1D1.
Отрезок B1M вдвое больше высоты B1H прямоугольного треугольника A1B1C1, проведённой из вершины прямого угла, поэтому
Из прямоугольного треугольника BMB1 находим, что
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Докажите что для параллелепипеда abcda1b1c1d1 параллельны прямые ac и a1c1
В прямоугольном параллелепипеде ABCDA1B1C1D1 через диагональ BD1 проведена плоскость α, параллельная прямой AC.
б) Найдите угол между проведённой плоскостью и плоскостью основания параллелепипеда, если AB = 5, BC = 12, CC1 = 10.
б) Пусть B1M — перпендикуляр, опущенный из вершины B1 на прямую l. Тогда B1M — ортогональная проекция наклонной BM на плоскость A1B1C1D1. По теореме о трёх перпендикулярах прямые BM и l перпендикулярны, поэтому угол BMB1 — линейный угол двугранного угла, образованного секущей плоскостью α и плоскостью A1B1C1D1.
Отрезок B1M вдвое больше высоты B1H прямоугольного треугольника A1B1C1, проведённой из вершины прямого угла, поэтому
Докажите что для параллелепипеда abcda1b1c1d1 параллельны прямые ac и a1c1
Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб.
а) Докажите, что грань ABCD — квадрат.
б) Найдите угол между плоскостями α и BCC1, если AA1 = 6, AB = 4.
Плоскость проходит через точку В, лежащую в плоскости основания, и параллельна прямой AC, лежащей в плоскости основания. Следовательно, плоскость пересекает плоскость основания по прямой, содержащей точку В и параллельной АС. Пусть эта прямая пересекает продолжения сторон DA и DC основания в точках E и F соответственно. Тогда пересекает плоскость боковых граней по прямым D1E и D1F. Пусть M и N — точки пересечения этих прямых с боковыми ребрами параллелепипеда, тогда BMD1N — сечение параллелепипеда плоскостью
Поскольку плоскость сечения проходит через прямую EF, параллельную плоскости ACC1A1 и пересекает её по прямой MN, прямая MN параллельна EF, а значит, параллельна AC.
По условию, сечение является ромбом, диагонали ромба перпендикулярны, поэтому и По теореме о трёх перпендикулярах, из перпендикулярности наклонной D1B и прямой AC следует перпендикулярность прямой AC проекции наклонной — прямой DB. Этим показано, что диагонали лежащего в основании прямоугольника взаимно перпендикулярны. Следовательно, этот прямоугольник является квадратом, что и требовалось доказать.
Приведем другое рассуждение. Диагонали ромба точкой пересечения делятся пополам, поэтому MN проходит через середину D1B. Кроме того, прямая MN параллельна прямой AC, а значит, и прямой EF. Из этого следует, что MN — средняя линия треугольника ED1F, а тогда точки M и N — середины рёбер параллелепипеда. Прямоугольные треугольники ABM и равны по гипотенузе и катету: Значит, а ABCD является квадратом.
б) Пусть K — середина ребра BB1 а KH — высота треугольника BKN. Тогда плоскость MKH перпендикулярна прямой BN. Значит, угол MHK — линейный угол искомого двугранного угла. (Или: проведём перпендикуляры MK и KH, по теореме о трёх перпендикулярах MH — также перпендикуляр к BN, поэтому MHK — линейный угол искомого двугранного угла).
В прямоугольном треугольнике BKN имеем:
Иначе. Сечение является ромбом, площадь ромба равна половине произведения его диагоналей: Проекцией ромба сечения на боковую грань ВСС1В1 является параллелограмм ВKС1N, площадь которого равна половине площади прямоугольника ВСС1В1 то есть 12. Поскольку для искомого угла между плоскостями получаем:
Ответ: или
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,