Докажите что единицей удельной теплоты парообразования является дж кг
Докажите что единицей удельной теплоты парообразования является дж кг
Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарение и кипение.
Кипение
Второй процесс парообразования — кипение. Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.
Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением. Температуру, при которой жидкость кипит, называют температурой кипения.
Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.
Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.
На рисунке приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АВ), кипения (ВС), нагревания пара (CD), охлаждения пара (DE), конденсации (EF) и последующего охлаждения (FG).
Удельная теплота парообразования
Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования.
Удельная теплота парообразования (L) — это величина, равная отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.
Единица удельной теплоты парообразования — [L] = Дж/кг.
Чтобы рассчитать количество теплоты Q, которое необходимо сообщить веществу массой тп для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования (L) умножить на массу вещества: Q = Lm.
При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.
Конспект урока «Кипение. Удельная теплота парообразования».
Удельная теплота парообразования и конденсации
Содержание
Твердые кристаллические вещества переходят в жидкое состояние посредством плавления. Чтобы расплавить вещество, необходимо сообщить ему некоторое количество теплоты. И, наоборот, при кристаллизации (переходе жидкости в твердое состояние) энергия выделяется в окружающую среду.
Проведем аналогию с переходом жидкости в пар. Этот переход может быть осуществлен двумя способами: испарением или кипением. Кипение является тем же испарением, но более интенсивным. Очевидно, что для того, чтобы происходил процесс кипения, жидкости необходимо сообщать какое-то количество теплоты. Это количество теплоты будет идти на образование пара.
В данном уроке мы познакомимся с новым определением – удельной теплотой парообразования и конденсации. Вы узнаете формулу для расчета количества теплоты, необходимого для парообразования жидкости и научитесь ею пользоваться.
Удельная теплота парообразования
Вы уже знаете, что кипение происходит при определенной для каждой жидкости температуре. Количество теплоты, которое потребуется сообщить этим жидкостям одинаковой массы для превращения их в пар тоже будет различно.
Удельная теплота парообразования некоторых жидкостей
В таблице 1 приведены экспериментально полученные величины удельной теплоты парообразования некоторых жидкостей.
Вещество | $L, \frac<Дж><кг>$ |
Вода | $2.3 \cdot 10^6$ |
Аммиак (жидкий) | $1.4 \cdot 10^6$ |
Спирт | $0.9 \cdot 10^6$ |
Эфир | $0.4 \cdot 10^6$ |
Ртуть | $0.3 \cdot 10^6$ |
Воздух (жидкий) | $0.2 \cdot 10^6$ |
Таблица 1. Удельная теплота парообразования некоторых веществ (при температуре кипения и нормальном атмосферном давлении)
Обратите внимание, что удельная теплота парообразования показывает количество теплоты, необходимое для превращения жидкости, взятой при ее температуре кипения, в пар.
Удельная теплота конденсации
Нужно ли сообщать пару энергию при его конденсации? Давайте рассмотрим простой опыт (рисунок 1).
Нальем в сосуд воду и закроем его пробкой. Через пробку проведем трубку и направим ее на кусочек охлажденного стекла. Доведем воду до кипения с помощью горелки.
Пар, поднимающийся над кипящей водой, будет конденсироваться, соприкасаясь с холодным стеклом. Если мы дотронемся до стекла, то обнаружим, что оно очень сильно нагрелось.
Так энергия пара передается стеклу. В результате этой потери энергии пар конденсируется. Если бы температура стекла была равна температуре пара, то теплопередача бы не происходила, и конденсат не образовывался бы.
Это говорит о том, что при конденсации пар отдает, выделяет энергию.
Более точные опыты также показывают, что
Конденсируясь, пар отдает то количество энергии, которое пошло на его образование.
Это довольно большая энергия, поэтому человечество стремится ее использовать. Например, на крупных тепловых электростанциях паром, который уже прошел через турбины, нагревают воду. Ее, в свою очередь, используют для отопления зданий и бытовых нужд.
Расчет количества теплоты, необходимого для парообразования
Из этой формулы при расчетах мы можем выражать массу ($m = \frac
Примеры задач
Дано:
$m = 2 \space кг$
$t_1 = 20 \degree C$
$t_2 = 100 \degree C$
$c = 4200 \frac<Дж><кг \cdot \degree C>$
$L = 2.3 \cdot 10^6 \frac<Дж><кг>$
Показать решение и ответ
Решение:
$Q_1 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 2 \space кг \cdot (100 \degree C – 20 \degree C) = 8400 \frac<Дж> <\degree C>\cdot 80 \degree C = 672 \space 000 \space Дж \approx 0.7 \cdot 10^6 \space Дж$.
$Q_2 = 2.3 \cdot 10^6 \frac<Дж> <кг>\cdot 2 \space кг = 4.6 \cdot 10^6 \space Дж$.
Рассчитаем общее количество энергии, которое нам потребуется:
$Q = Q_1 + Q_2 = 0.7 \cdot 10^6 \space Дж + 4.6 \cdot 10^6 \space Дж = 5.3 \cdot 10^6 \space Дж$.
Дано:
$m = 2 \space кг$
$t_1 = 100 \degree C$
$t_2 = 0 \degree C$
$c = 4200 \frac<Дж><кг \cdot \degree C>$
$L = 2.3 \cdot 10^6 \frac<Дж><кг>$
Решение:
$Q_1 = Lm$.
$Q_1 = 2.3 \cdot 10^6 \frac<Дж> <кг>\cdot 2 \space кг = 4.6 \cdot 10^6 \space Дж$.
$Q_2 = cm (t_1 – t_2)$.
$Q_2 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 2 \space кг \cdot (100 \degree C – 0 \degree C) = 8400 \frac<Дж> <\degree C>\cdot 100 \degree C = 840 \space 000 \space Дж \approx 0.8 \cdot 10^6 \space Дж$.
$Q = 4.6 \cdot 10^6 \space Дж + 0.8 \cdot 10^6 \space Дж= 5.4 \cdot 10^6 \space Дж$.
Дано:
$V = 0.5 \space л$
$\rho = 1000 \frac<кг><м^3>$
$L = 2.3 \cdot 10^6 \frac<Дж><кг>$
СИ:
$0.5 \cdot 10^ <-3>\space м^3$
Посмотреть решение и ответ
Решение:
Массу мы можем выразить через плотность и объем:
$m = \rho V$.
Тогда наша формула примет вид:
$Q = L\rho V$.
$Q = 2.3 \cdot 10^6 \frac<Дж> <кг>\cdot 1000\frac<кг> <м^3>\cdot 0.5 \cdot 10^ <-3>\space м^3 = 2.3 \cdot 10^6 \frac<Дж> <кг>\cdot 0.5 \space кг = 1.15 \cdot 10^6 \space Дж$.
§ 6.6. Теплота парообразования
Требуется ли энергия для превращения жидкости в пар? Скорее всего да! Не так ли?
Мы отмечали (см. § 6.1), что испарение жидкости сопровождается ее охлаждением. Для поддержания температуры испаряющейся жидкости неизменной к ней необходимо подводить извне теплоту. Конечно, теплота и сама может передаваться жидкости от окружающих тел. Так, вода в стакане испаряется, но температура воды, несколько более низкая, чем температура окружающего воздуха, остается неизменной. Теплота передается от воздуха к воде до тех пор, пока вся вода не испарится.
Чтобы поддерживать кипение воды (или иной жидкости), к ней тоже нужно непрерывно подводить теплоту, например подогревать ее горелкой. При этом температура воды и сосуда не повышается, но каждую секунду образуется определенное количество пара.
Таким образом, для превращения жидкости в пар путем испарения или путем кипения требуется приток теплоты. Количество теплоты, требующееся для превращения данной массы жидкости в пар той же температуры, называется теплотой парообразования этой жидкости.
На что расходуется подводимая к телу энергия? Прежде всего на увеличение его внутренней энергии при переходе из жидкого состояния в газообразное: ведь при этом увеличивается объем вещества от объема жидкости до объема насыщенного пара. Следовательно, увеличивается среднее расстояние между молекулами, а значит, и их потенциальная энергия.
Кроме того, при увеличении объема вещества совершается работа против сил внешнего давления. Эта часть теплоты парообразования при комнатной температуре составляет обычно несколько процентов всей теплоты парообразования.
Теплота парообразования зависит от рода жидкости, ее массы и температуры. Зависимость теплоты парообразования от рода жидкости характеризуется величиной, называемой удельной теплотой парообразования.
Удельной теплотой парообразования данной жидкости называется отношение теплоты парообразования жидкости к ее массе:
где r — удельная теплота парообразования жидкости; m — масса жидкости; Qп — ее теплота парообразования. Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).
Удельная теплота парообразования воды очень велика: 2,256 • 10 6 Дж/кг при температуре 100 °С. У других жидкостей (спирт, эфир, ртуть, керосин и др.) удельная теплота парообразования меньше в 3—10 раз.
Зависимость удельной теплоты парообразования от температуры
Для одной и той же жидкости удельная теплота парообразования при разных температурах имеет разное значение. При повышении температуры удельная теплота парообразования уменьшается, так как с ростом температуры уменьшается разность между объемом жидкости и объемом ее насыщенного пара. Поэтому уменьшается изменение внутренней энергии и работа против сил внешнего давления.
Значения удельной теплоты парообразования воды при разных температурах приведены в таблице 3.
При критической температуре (374 °С) удельная теплота парообразования воды равна нулю*.
* Удельная теплота парообразования всех жидкостей при критической температуре равна нулю, так как при этой температуре нет различия между жидкостью и паром.
Теплота образования жидкости в соответствии с определением (6.6.1) равна
Согласно закону сохранения энергии при конденсации пара происходит выделение такого же по модулю количества теплоты, какое было затрачено при парообразовании той же массы жидкости при той же температуре:
Формулами (6.6.2) и (6.6.3) пользуются при записи уравнений теплового баланса в тех случаях, когда мы встречаемся с парообразованием и конденсацией.
Поглощение теплоты при парообразовании и выделение теплоты при конденсации водяных паров играют исключительно важную роль в природе, делают более умеренным климат приморских стран. Процессы парообразования и конденсации воды в природе совершаются в грандиозных масштабах. Так как значение удельной теплоты парообразования воды достаточно велико, то испарение с поверхности морей и океанов в теплую погоду сопровождается поглощением большого количества теплоты, а при конденсации пара (выпадении осадков) в холодную погоду происходит выделение значительных количеств теплоты.
Удельная теплота парообразования и конденсации
Урок 21. Физика 8 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Удельная теплота парообразования и конденсации»
Логично предположить, что если требуется отдельная энергия на плавление, то требуется отдельная энергия на парообразование. Как и обычно, для разных веществ эта энергия разная. Итак, удельной теплотой парообразования называется физическая величина, которая показывает, какое количество теплоты необходимо сообщить одному килограмму жидкости при температуре кипения, чтобы превратить её в пар.
Соответственно, единицей измерения данной величины является джоуль на килограмм:
В таблице указана удельная теплота парообразования для некоторых веществ.
Поскольку при парообразовании тело получает энергию, можно сделать вывод, что внутренняя энергия тела в газообразном состоянии больше, чем внутренняя энергия тела той же массы в жидком состоянии. Поэтому, при конденсации пар отдаёт то количество энергии, которое потребовалось для его образования.
Чтобы вычислить количество теплоты, необходимое для превращения жидкости в пар взятой при температуре кипения, нужно удельную теплоту парообразования умножить на массу:
Примеры решения задач.
Задача 1. Какое количество теплоты выделится при конденсации 2,5 кг эфира?
Задача 2. На парообразование 200 мл ртути потратили 810 кДж. Найдите плотность ртути.
Задача 3. В кастрюлю положили 4 кг льда, растопили его и закипятили. На это ушло 12282 кДж. Найдите начальную температуру льда.
Для решения этой задачи, нужно в первую очередь подумать: из чего складывается количество теплоты, потраченное на превращение льда в пар. Сначала нужно довести лёд до температуры плавления, потом расплавить его, довести полученную воду до температуры кипения и превратить её в пар. Итак, данный процесс делится на 4 этапа, для каждого из которых требуется определённое количество теплоты.
8 класс
§ 20. Удельная теплота парообразования и конденсации
Кипение, как мы видели, тоже испарение, только сопровождается оно быстрым образованием и ростом пузырьков пара. Очевидно, что во время кипения необходимо подводить к жидкости определённое количество теплоты. Это количество теплоты идёт на образование пара. Причём различные жидкости одной и той же массы требуют разное количество теплоты для обращения их в пар при температуре кипения.
Опытами было установлено, что для испарения воды массой 1 кг при температуре 100 °C требуется 2,3 • 10 6 Дж энергии. Для испарения эфира массой 1 кг, взятого при температуре 35 °C, необходимо 0,4 • 10 6 Дж энергии.
Следовательно, чтобы температура испаряющейся жидкости не изменялась, к жидкости необходимо подводить определённое количество теплоты.
Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры, называется удельной теплотой парообразования.
Удельную теплоту парообразования обозначают буквой L. Её единица — 1 Дж/кг.
Опытами установлено, что удельная теплота парообразования воды при 100 °C равна 2,3 • 10 6 Дж. Иными словами, для превращения воды массой 1 кг в пар при температуре 100 °C требуется 2,3 • 10 6 Дж энергии. Следовательно, при температуре кипения внутренняя энергия вещества в парообразном состоянии больше внутренней энергии такой же массы вещества в жидком состоянии.
Таблица 6. Удельная теплота парообразования некоторых веществ
(при температуре кипения и нормальном атмосферном давлении)
Вещество | L, Дж/кг |
Вода | 2,3 • 10 6 |
Аммиак (жидкий) | 1,4 • 10 6 |
Спирт | 0,9 • 10 6 |
Эфир | 0,4 • 10 6 |
Ртуть | 0,3 • 10 6 |
Воздух (жидкий) | 0,2 • 10 6 |
Соприкасаясь с холодным предметом, водяной пар конденсируется (рис. 25). При этом выделяется энергия, поглощённая при образовании пара. Точные опыты показывают, что, конденсируясь, пар отдаёт то количество энергии, которое пошло на его образование.
Следовательно, при превращении 1 кг водяного пара при температуре 100 °C в воду той же температуры выделяется 2,3 • 10 6 Дж энергии.
Как видно из сравнения с другими веществами (табл. 6), эта энергия довольно велика.
Освобождающаяся при конденсации пара энергия может быть использована. На крупных тепловых электростанциях отработавшим в турбинах паром нагревают воду.
Нагретую таким образом воду используют для отопления зданий, в банях, прачечных и для других бытовых нужд.
Чтобы вычислить количество теплоты Q, необходимое для превращения в пар жидкости любой массы, взятой при температуре кипения, нужно удельную теплоту парообразования L умножить на массу m:
Из этой формулы можно определить, что
Какое количество энергии требуется для превращения воды массой 2 кг, взятой при температуре 20 °C, в пар?
Запишем условие задачи и решим её.
Вопросы:
1. На что расходуется энергия, подводимая к жидкости при кипении?
2. Что показывает удельная теплота парообразования?
3. Как можно показать на опыте, что при конденсации пара выделяется энергия?
4. Чему равна энергия, выделяемая водяным паром массой 1 кг при конденсации?
5. Где в технике используют энергию, выделяемую при конденсации водяного пара?
Упражнения:
Упражнение № 16
1. Как надо понимать, что удельная теплота парообразования воды равна 2,3 • 10 6 Дж/кг?
2. Как надо понимать, что удельная теплота конденсации аммиака равна 1,4 • 10 6 Дж/кг?
3. У какого из приведённых в таблице 6 веществ при обращении из жидкого состояния в пар внутренняя энергия увеличивается больше? Ответ обоснуйте.
4. Какое количество энергии требуется для обращения воды массой 150 г в пар при температуре 100 °C?
5. Какое количество энергии нужно затратить, чтобы воду массой 5 кг, взятую при температуре 0 °С, довести до кипения и испарить её?
6. Какое количество энергии выделит вода массой 2 кг при охлаждении от 100 до 0 °С? Какое количество энергии выделится, если вместо воды взять столько же пара при 100 °C?
Задания:
1. По таблице 6 определите, у какого из веществ при обращении из жидкого состояния в пар внутренняя энергия увеличивается сильнее. Ответ обоснуйте.
2. Подготовьте доклад на одну из тем (по выбору).