Докажите что если биссектриса внешнего угла треугольника параллельна стороне треугольника то этот
Докажите, что если биссектриса внешнего угла треугольника параллельна стороне треугольника, то треугольник равнобедреннй
Допустим, внутренний угол треугольника «a»
Внешний угол треугольника = 180-a
Биссектриса делит его пополам, т. е. половинки угла = (180-а) /2
А в самом треугольнике другие 2 угла, кроме a в сумме тоже равны 180-а, т. к. сумма углов в треугольнике = 180
Если биссектриса угла параллельна стороне треугольника, значит, половина внешнего угла = углу при основании. А следовательно, вторая половина = другому углу при основании.
А если углы при основании равны, треугольник равнобедренный!
Допустим, внутренний угол треугольника «a»
Внешний угол треугольника = 180-a
Биссектриса делит его пополам, т. е. половинки угла = (180-а) /2
А в самом треугольнике другие 2 угла, кроме a в сумме тоже равны 180-а, т. к. сумма углов в треугольнике = 180
Если биссектриса угла параллельна стороне треугольника, значит, половина внешнего угла = углу при основании. А следовательно, вторая половина = другому углу при основании.
А если углы при основании равны, треугольник равнобедренный!
Допустим, внутренний угол треугольника «a»
Внешний угол треугольника = 180-a
Биссектриса делит его пополам, т. е. половинки угла = (180-а) /2
А в самом треугольнике другие 2 угла, кроме a в сумме тоже равны 180-а, т. к. сумма углов в треугольнике = 180
Если биссектриса угла параллельна стороне треугольника, значит, половина внешнего угла = углу при основании. А следовательно, вторая половина = другому углу при основании.
А если углы при основании равны, треугольник равнобедренный!