Докажите что если данная прямая

Стереометрия. Страница 2

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Главная > Учебные материалы > Математика: Стереометрия. Страница 2
Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая
Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая
1.Параллельность прямых в пространстве.
2.Признак параллельности прямых.
3.Признак параллельности плоскостей.
4.Свойства параллельных плоскостей.
5.Примеры.

1. Параллельность прямых в пространстве

Теорема. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Доказательство. Пусть b данная прямая и точка А, не лежащая на данной прямой. Проведем через точку А и прямую b плоскость α. А через точку А прямую a, параллельную прямой b. (Рис.1)

Допустим, что существует другая прямая а’, параллельная прямой b и проходящая через точку А. Тогда через них можно провести плоскость β. Отсюда следует, что через точку А и прямую b можно провести две плоскости. А это невозможно согласно теореме о единственности существования плоскости, проведеной через прямую и не лежащую на ней точку. Таким образом, плоскости α и β совпадают. А следовательно, согласно аксиоме, прямые а и a’ совпадают также.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис. 1 Параллельность прямых в пространстве.

2.Признак параллельности прямых

Теорема. Две прямые, параллельные третьей прямой, параллельны.

Доказательство. Пусть прямые а и b лежат в разных плоскостях и параллельны прямой с. Доказать, что прямые а и b параллельны между собой. (Рис.2)

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис.2 Признак параллельности прямых

3. Признак параллельности плоскостей

Теорема: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Доказательство.

а ∈ α, γ.
а 1 ∈ β, γ.
с ∈ α, β,γ

т.е. плоскости α и γ пересекаются по двум прямым а и с, а плоскости β и γ пересекаются по прямым а 1 и с.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис. 3 Признак параллельности плоскостей.

Согласно аксиоме стереометрии, это невозможно, т.к. две плоскости могут пересекаться только по одной прямой. И следовательно, наше предположение неверно. Плоскости α и β не пересекаются, они параллельны.

4. Свойства параллельных плоскостей

Теорема: Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

Доказательство.

Пусть даны две параллельные плоскости α и β (Рис.4). Плоскость γ пересекает их по прямым а и b.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис. 4 Свойства параллельных плоскостей.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

5. Пример 1

Докажите, что если прямые АВ и CD скрещивающиеся, то прямые АС и BD тоже скрещиваются.

Доказательство:

Пусть даны две скрещивающиеся прямые АВ и CD. Проведем через прямую АВ и точку С плоскость α (Рис.5). Так как прямые АВ и CD скрещивающиеся, то прямая CD не лежит в плоскости α, а пересекает ее в одной точке С.

Отсюда следует, что точка D не принадлежит плоскости α. Она лежит вне ее.

Таким образом, если мы проведем прямую АС, то она полностью будет принадлежать плоскости α, так как две ее точки А и С принадлежат плоскости α.

А прямая BD не будет принадлежать плоскости α, так как точка D не принадлежит плоскости α. Прямая BD будет пересекать плоскость α в одной точке В.

Отсюда можно сделать вывод, что прямая АС не может пересекать прямую BD, так как прямая АС полностью принадлежит плоскости α. А прямая BD имеет только одну общую точку с плоскостью α, точку В. Но так как точка В не лежит на прямой АС, следовательно, прямые АС и BD не пересекаются. Они являются скрещивающимися.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис.5 Задача. Докажите, что если прямые АВ и CD скрещивающиеся.

Пример 2

Точки А, В, С, D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD.

Доказательство:

Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем плоскость α через точки A, D, C и плосксоть α’ через точки А, В, С (Рис.6). Точки P, S, F, E являются серединами отрезков AB, BC, AD и CD соответственно. Необходимо доказать, что прямая PS параллельна прямой FE.

Рассмотрим треугольник АВС. Он полностью лежит в плоскости α’, так как три его вершины лежат в данной плоскости по построению. Отрезок PS представляет собой среднюю линию треугольника, которая параллельна АС.

Теперь рассмотрим треугольник АСD. Он полностью лежит в плоскости α, так как три его вершины лежат в данной плоскости по построению. Отрезок FE представляет собой среднюю линию треугольника, которая также параллельна АС.

Отсюда можно сделать вывод: если две прямые PS и FE параллельны третьей прямой АС, то они параллельны и между собой. И равны половине основанию АС. Таким образом, PSEF представляет собой параллелограмм.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис.6 Задача. Точки А, В, С, D не лежат в одной плоскости.

Пример 3

Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что прямые, соединяющие середины отрезков АВ и ВС, АС и BD, AD и BC пересекаются в одной точке.

Доказательство:

Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем отрезки EP, VS, FT, которые соединят середины сторон AB и CD, BC и AD, AC и BD соответственно (Рис.7).

Из предыдущей задачи нам известно, что четырехугольник EVPS, вершины которого являются серединами отрезков АВ, ВС, СD и AD, есть параллелограмм, у которого EP и VS диагонали. Эти диагонали пересекаются в точке О и делятся этой точкой пополам.

Так как у отрезка VS середина одна, т.е. точка О, то все три диагонали EP, VS и FT пересекаются в этой точке.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис.7 Задача. Даны четыре точки А, В, С, D, не лежащие в одной плоскости.

Пример 4

Докажите, что если две плоскости, пересекающиеся по прямой а, пересекают плоскость α по параллельным прямым, то прямая а параллельна плоскости α.

Доказательство:

Пусть даны две плоскости β и γ, пересекающиеся по прямой а (Рис.8). Эти плоскости пересекают плоскость α по параллельным прямым b и с. Необходимо доказать, что прямая а параллельна плоскости α.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис.8 Задача. Докажите, что если две плоскости, пересекающиеся по прямой а.

Пример 5

Докажите, что если четыре прямые, проходящие через точку О, пересекают плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную α и не проходящую через точку О, тоже в вершинах параллелограмма.

Доказательство:

Пусть даны четыре прямые, проходящие через точку О, ОА, ОВ, ОС и OD (Рис.9). Они пересекают плоскость α в точках А, В, С и D соответственно. Проведем плоскость α’, параллельную плоскости α. Тогда прямые ОА, ОВ, ОС и OD пересекут плоскость α’ в точках A’B’C’D’.

Проведем плоскость β через точки А, В, A’, B’. Тогда прямые АВ и A’B’ не пересекаются, так как это прямые пересечения двух параллельных плоскостей α и α’ с секущей плоскостью β.

Отсюда следует, что прямые ВС и В’С’, CD и C’D’, AD и A’D’ параллельны. А так как АВ параллельна CD, а ВС параллельна AD, то следовательно, А’В’ параллельна C’D’, а В’С’ параллельна A’D’.

Таким образом, A’B’C’D’ также является параллелограммом.

Докажите что если данная прямая. Смотреть фото Докажите что если данная прямая. Смотреть картинку Докажите что если данная прямая. Картинка про Докажите что если данная прямая. Фото Докажите что если данная прямая

Рис.9 Задача. Докажите, что если четыре прямые, проходящие через точку А.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *