Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Напомним свойства Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡. НСкоторыС ΠΈΠ· этих свойств Π±Ρ‹Π»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π² заданиях для 9-Π³ΠΎ класса, Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ. ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ рисунки Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‚ Ρ…ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

$$ 4.<2>^<β—‹>$$. Π’ любой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сСрСдины оснований, Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон, Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (Π½Π° рис. 21 Ρ‚ΠΎΡ‡ΠΊΠΈ `M`, `N`, `O` ΠΈ `K`).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

$$ 4.<3>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ основании Ρ€Π°Π²Π½Ρ‹ (рис. 22).

$$ 4.<4>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ прямая, проходящая Ρ‡Π΅Ρ€Π΅Π· сСрСдины оснований, пСрпСндикулярна основаниям ΠΈ являСтся осью симмСтрии Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ (рис. 23).

$$ 4.<5>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ (рис. 24).

$$ 4.<6>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ высота, опущСнная Π½Π° большСС основаниС ΠΈΠ· ΠΊΠΎΠ½Ρ†Π° мСньшСго основания, Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°Π²Π΅Π½ полуразности оснований, Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ – ΠΈΡ… полусуммС

(рис. 25, основания Ρ€Π°Π²Π½Ρ‹ `a` ΠΈ `b`, `a>b`).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

$$ 4.<7>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сСрСдины Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (рис. 26).

$$ 4.<8>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ полуразности оснований (рис. 27).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сумма ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Π° суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ произвСдСния оснований, Ρ‚. Π΅. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ с основаниями `a` ΠΈ `b` ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ с ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ Π½Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторонах, проходящий Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ основаниям, Ρ€Π°Π²Π΅Π½ `(2ab)/(a+b)` (Π½Π° рис. 28 ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ `MN`).

$$ 4.<11>^<β—‹>$$. Π’Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° равнобокая.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ косинусов (см. рис. 29Π° ΠΈ Π±):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (Ρ‚. ΠΊ. `cos(180^@-varphi)=-cos varphi`).

ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ `CK«|\|«BA` (рис. 29Π²), рассматриваСм Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ послСднСС равСнство, замСняСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π² скобках Π² (2), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ `d_1=d_2`, `c_1=c_2=c`, поэтому ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины оснований Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ€Π°Π²Π΅Π½ `5`, ΠΎΠ΄Π½Π° ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Π° `6`. Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли Π΅Ρ‘ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ `ul(BDK)` с Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ `BK=BC+AD=2MN=10` ΠΈ ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠΌ `DK=6` ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `BDK` Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ‚. ΠΊ. Ссли `DP_|_BK`, Ρ‚ΠΎ

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡΡΡŒ, Ρ€Π°Π·Π±ΠΈΠ²Π°ΡŽΡ‚ Π΅Ρ‘ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с ΠΎΠ±Ρ‰Π΅ΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ. Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΊ основаниям, Ρ€Π°Π²Π½Ρ‹ `S_1` ΠΈ `S_2`.

Π”Π°Π»Π΅Π΅, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ `BOC` ΠΈ `DOA` ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² относятся ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сторон, Π·Π½Π°Ρ‡ΠΈΡ‚, `(S_1)/(S_2)=(a/b)^2`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.ΠžΡ‚ΡΡŽΠ΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ `S_0=sqrt(S_1S_2)`, ΠΈ поэтому ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Основания Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹ `8` ΠΈ `10`, высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° `3` (рис. 32).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Найти радиус окруТности, описанной ΠΎΠΊΠΎΠ»ΠΎ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Из ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `ABK` Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ `AB=sqrt(1+9)=sqrt(10)` ΠΈ `sinA=(BK)/(AB)=3/(sqrt10)`. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, описанная ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ `ABCD`, описана ΠΈ ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `ABD`, Π·Π½Π°Ρ‡ΠΈΡ‚ (Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (1), Β§ 1), `R=(BD)/(2sinA)`. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ `BD` Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΈΠ· ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (ΠΈΠ»ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ `d^2=c^2+ab`), Ρ‚ΠΎΠ³Π΄Π°

$$ 4.<12>^<β—‹>$$. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π΄Π²Π΅ стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π½Ρ‹ диагоналям Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡ Ρ€Π°Π²Π½Π° суммС оснований.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ срСдняя линия Ρ‚Π°ΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π² ΠΏΠΎΠ»Ρ‚ΠΎΡ€Π°

Π’ 22:54 поступил вопрос Π² Ρ€Π°Π·Π΄Π΅Π» Π•Π“Π­ (ΡˆΠΊΠΎΠ»ΡŒΠ½Ρ‹ΠΉ), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π²Ρ‹Π·Π²Π°Π» затруднСния Ρƒ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ.

Вопрос Π²Ρ‹Π·Π²Π°Π²ΡˆΠΈΠΉ трудности

ΠžΡ‚Π²Π΅Ρ‚ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹ΠΉ экспСртами Π£Ρ‡ΠΈΡΡŒ.Ru

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚, Π±Ρ‹Π» ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ спСциалист, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ…ΠΎΡ€ΠΎΡˆΠΎ разбираСтся Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΉ Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ «Π•Π“Π­ (ΡˆΠΊΠΎΠ»ΡŒΠ½Ρ‹ΠΉ)». Π’Π°Ρˆ вопрос Π·Π²ΡƒΡ‡Π°Π» ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ срСдняя линия Ρ‚Π°ΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π² ΠΏΠΎΠ»Ρ‚ΠΎΡ€Π° Ρ€Π°Π·Π° большС мСньшСго основания.

ПослС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ совСщания с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ спСциалистами нашСго сСрвиса, ΠΌΡ‹ склонны ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ Π²Π°ΠΌΠΈ вопрос Π±ΡƒΠ΄Π΅Ρ‚ Π·Π²ΡƒΡ‡Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ задания ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠΠ•Π‘ΠšΠžΠ›Π¬ΠšΠž Π‘Π›ΠžΠ’ ΠžΠ‘ ΠΠ’Π’ΠžΠ Π• Π­Π’ΠžΠ“Πž ΠžΠ’Π’Π•Π’Π:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π Π°Π±ΠΎΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ я Π³ΠΎΡ‚ΠΎΠ²Π»ΡŽ для студСнтов, ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΠΈ всСгда ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ Π½Π° ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎ. Π― занимаюсь написаниСм студСнчСских Ρ€Π°Π±ΠΎΡ‚ ΡƒΠΆΠ΅ Π±ΠΎΠ»Π΅Π΅ 4-Ρ… Π»Π΅Ρ‚. Π—Π° это врСмя, ΠΌΠ½Π΅ Π΅Ρ‰Π΅ Π½ΠΈ Ρ€Π°Π·Ρƒ Π½Π΅ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π»ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ Π½Π° Π΄ΠΎΡ€Π°Π±ΠΎΡ‚ΠΊΡƒ! Если Π²Ρ‹ ΠΆΠ΅Π»Π°Π΅Ρ‚Π΅ Π·Π°ΠΊΠ°Π·Π°Ρ‚ΡŒ Ρƒ мСня ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΎΡΡ‚Π°Π²ΡŒΡ‚Π΅ заявку Π½Π° этом сайтС. ΠžΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с ΠΎΡ‚Π·Ρ‹Π²Π°ΠΌΠΈ ΠΌΠΎΠΈΡ… ΠΊΠ»ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π½Π° этой страницС.

ΠŸΠžΠœΠžΠ“ΠΠ•Πœ УЧИВЬБЯ НА ΠžΠ’Π›Π˜Π§ΠΠž!

ВыполняСм учСничСскиС Ρ€Π°Π±ΠΎΡ‚Ρ‹ любой слоТности Π½Π° Π·Π°ΠΊΠ°Π·. Π“Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌ Π½ΠΈΠ·ΠΊΠΈΠ΅ Ρ†Π΅Π½Ρ‹ ΠΈ высокоС качСство.

Π”Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Π² Ρ†ΠΈΡ„Ρ€Π°Ρ…:

Π—Π°Ρ‡Ρ‚Π΅Π½ΠΎ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ услуги ΠΏΠΎΠΌΠΎΡ‰ΠΈ студСнтам с 1999 Π³ΠΎΠ΄Π°. Π—Π° всС врСмя Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΡ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ 400 тысяч Ρ€Π°Π±ΠΎΡ‚. НаписанныС Π½Π°ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ всС Π±Ρ‹Π»ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Π·Π°Ρ‰ΠΈΡ‰Π΅Π½Ρ‹ ΠΈ сданы. К настоящСму ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ наши офисы Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² 40 Π³ΠΎΡ€ΠΎΠ΄Π°Ρ….

ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΊΠ° Π£Ρ‡ΠΈΡΡŒ.Ru Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ для студСнтов ΠΈ школьников. Π—Π΄Π΅ΡΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ Π½Π° вопросы ΠΏΠΎ Π³ΡƒΠΌΠ°Π½ΠΈΡ‚Π°Ρ€Π½Ρ‹ΠΌ, тСхничСским, СстСствСнным, общСствСнным, ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹ΠΌ ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΠΌ Π½Π°ΡƒΠΊΠ°ΠΌ. Если ΠΆΠ΅ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π΅ удаСтся Π½Π°ΠΉΡ‚ΠΈ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ свой вопрос экспСртам. Π‘ Π½Π°ΠΌΠΈ ΡΠΎΡ‚Ρ€ΡƒΠ΄Π½ΠΈΡ‡Π°ΡŽΡ‚ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΠΈ школ, ΠΊΠΎΠ»Π»Π΅Π΄ΠΆΠ΅ΠΉ, унивСрситСтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ с Ρ€Π°Π΄ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ Π²Π°ΠΌ. ΠŸΠΎΠΌΠΎΡ‰ΡŒ студСнтам ΠΈ школьникам оказываСтся круглосуточно. Π‘ Π£Ρ‡ΠΈΡΡŒ.Ru ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ станСт Π² нСсколько Ρ€Π°Π· ΠΏΡ€ΠΎΡ‰Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ здСсь ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° свой вопрос, Π½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ свои знания изучая ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСртов ΠΏΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ направлСниям Π½Π°ΡƒΠΊΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ Β§7β„–26.
ВычислитС ΠΏΡ€ΠΎΠΏΡƒΡΠΊΠ½ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ (Π² кубичСских ΠΌΠ΅Ρ‚Ρ€Π°Ρ… Π·Π° 1 Ρ‡) водосточной Ρ‚Ρ€ΡƒΠ±Ρ‹, сСчСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

ВсСм Ρ…Π°ΠΉ. НуТна ΠΏΠΎΠΌΠΎΡ‰ΡŒ:
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Π°Ρ… + by = 81 коэффициСнтыа ΠΈ b β€” Ρ†Π΅Π»Ρ‹Π΅ числа, Ρ‚ΠΎ ΠΏΠ°Ρ€Π° чисСл (15; 40) Π½Π΅ ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

220. Π”Π°Π½ΠΎ 5 прямых: a, b, с, d, Ρ‚. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅-Ρ‚ΠΎ Π΄Π²Π΅ ΠΈΠ·
Π½ΠΈΡ… (ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅) ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Бколько сущСствуСт ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

ΠŸΠΎΠ±Π΅Π΄ΠΈΡ‚Π΅Π»ΡŒ ΡˆΠΊΠΎΠ»Ρ‹ ΠΏΠΎ Π»Π΅Π³ΠΊΠΎΠΉ Π°Ρ‚Π»Π΅Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΠ±Π΅ΠΆΠ°Π» Π΄ΠΈΡΡ‚Π°Π½Ρ†ΠΈΡŽ 100 ΠΌ Π·Π° врСмя, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° сСкундомСрС Π½Π° рисункС 13. Π’Ρ‹Ρ€Π°Π·ΠΈΡ‚Π΅ это ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

34 Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅, ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… значСниях Ρ… выполняСтся условиС Ρƒ = Ρ‚, Ρƒ > Ρ‚, Ρƒ ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

ΠŸΡ€ΠΈΠ²Π΅Ρ‚ΠΎΡ) Как Ρƒ ΠΊΠΎΠ³ΠΎ с Ρ„ΠΈΠ·ΠΈΠΊΠΎΠΉ? Π‘ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡ‚Π°Ρ‰ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ вопрос…за ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π·Π°Ρ€Π°Π½Π΅Π΅ спасибо.
Масса пустого артиллСрийского орудия 290 ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

4. НачСртитС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ АВБ ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‚ΡŒΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ О Π²Π½Π΅ Π΅Π³ΠΎ (ΠΊΠ°ΠΊ Π½Π°
рисункС 11). ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

518.
Π—Π°ΠΏΠΈΡˆΠΈ Π½Π° матСматичСском языкС: 1) Числа Π° ΠΈ b ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·Π½Π°ΠΊΠ°. 2) Числа Ρ… ΠΈ Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ².

81. На ΠΎΠ΄Π½ΠΎΠΉ ΠΈ Ρ‚ΠΎΠΉ ΠΆΠ΅ высотС находятся дСрСвянный ΠΈ ΠΆΠ΅Π»Π΅Π·Π½Ρ‹ΠΉ бруски ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°. Какой ΠΈΠ· брусков ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚
большСй ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя
прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ срСд-
няя линия Ρ‚Π°ΠΊΠΎΠΉ ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

МнС Π½ΡƒΠΆΠ½Π° услуга β„– 826
Высота ΠΊΠΎΠΌΠ½Π°Ρ‚Ρ‹ 3 ΠΌ, ΡˆΠΈΡ€ΠΈΠ½Π° 5 ΠΌ ΠΈ Π΄Π»ΠΈΠ½Π° 6 ΠΌ. Бколько кубичСских
ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π²ΠΎΠ·Π΄ΡƒΡ…Π° находится Π² ΠΊΠΎΠΌΠ½Π°Ρ‚Π΅? ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

Π’ качСствС Π·Π°ΠΌΠ΅Π΄Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ быстрых Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΡΠΆΠ΅Π»ΡƒΡŽ Π²ΠΎΠ΄Ρƒ ΠΈΠ»ΠΈ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄. Π’ ΠΊΠ°ΠΊΠΎΠΌ ΠΈΠ· этих Π·Π°ΠΌΠ΅Π΄Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ испытываСт ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

ЗдравствуйтС! ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ ΠΈΡΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π΄ΠΎΠΏΡƒΡ‰Π΅Π½Π½Ρ‹Π΅ ошибки.

1) Π‘ ΠΈΡΡ‡Π΅Ρ€ΠΏΡ‹Π²Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ сатирик вскрываСт ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия

Π”Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ А (0; 1; 2), Π’ (72; 1; 2), Π‘ (72; 2; 1) ΠΈ D (0; 2; 1). Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ АВБD β€” ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚.

Π”Ρ€ΡƒΠ·ΡŒΡ, ΠΊΠ°ΠΊ Π²Ρ‹ Ρ€Π΅ΡˆΠ°Π»ΠΈ Ρ‚Π°ΠΊΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ?
Π”Π°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ АВБ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ DE, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ прямой АБ, Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ DΠΈ Π• ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли Ρƒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΄Π²Π΅ стороны ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΈ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ ΠΎΠ½ являСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠΌ.

Π°) Π Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… сторон Ρ‚ΡƒΠΏΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Π° 8 см, Π° Π΅Π³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π΅Π½ 38 см. НайдитС стороны ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΠΎ сторонС Π° ΠΈ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΌ ΠΊ Π½Π΅ΠΉ ΡƒΠ³Π»Π°ΠΌ Ξ± ΠΈ Ξ².

Π¦ΠΈΠ»ΠΈΠ½Π΄Ρ€, осСвоС сСчСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, вписан Π²
конус Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ основания Ρ†ΠΈ-
Π»ΠΈΠ½Π΄Ρ€Π° касаСтся Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

На рисункС 58 Ρ…ΠΎΡ€Π΄Ρ‹ МК ΠΈ МВ ΡΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‚ Π΄ΡƒΠ³ΠΈ Π² 60Β° ΠΈ 120Β°. Радиус окруТности Ρ€Π°Π²Π΅Π½ R. НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.
( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

2. На Π΄Π°Π½Π½ΠΎΠΉ прямой l Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ, ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ
Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ А ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² плоско-
сти Ξ± (l пСрСсСкаСт ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

ОснованиСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ DABC слуТит Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ
ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC (∟C = 90Β°), АБ = Π‘Π’ =
= 4. Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

НайдитС ΡƒΠ³Π»Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, зная, Ρ‡Ρ‚ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ… большС Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Π½Π° 50Β°.

ΠšΠ°ΠΊΡƒΡŽ Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΡƒΡŽ Π΄Π»ΠΈΠ½Ρƒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ€Π΅Π±Ρ€ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ тСтраэдра, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ помСщаСтся Π² ΠΊΠΎΡ€ΠΎΠ±ΠΊΡƒ, ΠΈΠΌΠ΅ΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ ΠΊΡƒΠ±Π° с Ρ€Π΅Π±Ρ€ΠΎΠΌ 1 см?

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ Β§7β„–26.
ВычислитС ΠΏΡ€ΠΎΠΏΡƒΡΠΊΠ½ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ (Π² кубичСских ΠΌΠ΅Ρ‚Ρ€Π°Ρ… Π·Π° 1 Ρ‡) водосточной Ρ‚Ρ€ΡƒΠ±Ρ‹, сСчСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ( ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅. )

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠΉ прямой Π½Π° Ρ€ΠΎΠΌΠ± ΠΈ равносторонний Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρ‚ΠΎ срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ составляСт 3/4

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠžΡ‚Π²Π΅Ρ‚Ρ‹ 2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ задания ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Ссли Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ двумя прямыми Π½Π° Ρ‚Ρ€ΠΈ равносторонних Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π’ΠΎΠΉΠ½Π° Π·Π° испан­скоС на­слСдство

Ѐранция ΠΏΡ€ΠΎΡ‚ΠΈΠ² Ан­глии ΠΈ Ни­дСрландов

ΠŸΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π€Ρ€Π°Π½Ρ†ΠΈΠΈ ΠΈ усилСниС Англии. Гол­ландия стала союзником Англии

ШвСция ΠΏΡ€ΠΎΒ­Ρ‚ΠΈΠ² России, Π”Π°Π½ΠΈΠΈ, Π Π΅Ρ‡ΠΈ ΠŸΠΎΡΠΏΠΎΠ»ΠΈΡ‚ΠΎΠΉ (Польши)

ΠŸΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π¨Π²Π΅Ρ†ΠΈΠΈ. Рос­сия ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° Π²Ρ‹Ρ…ΠΎΠ΄ Π² Бал­тийскоС ΠΌΠΎΡ€Π΅. ШвСция потСряла Ρ‡Π°ΡΡ‚ΡŒ прибалтий­ских зСмСль

Π’ΠΎΠΉΠ½Π° Π·Π° ав­стрийскоС наслСд­ство

ΠŸΡ€ΡƒΡΡΠΈΡ, Ѐранция, Испания ΠΈ Ρ‡Π°ΡΡ‚ΡŒ Π½Π΅Β­ΠΌΠ΅Ρ†ΠΊΠΈΡ… кня­ТСств ΠΏΡ€ΠΎΡ‚ΠΈΠ² Австрии, Англии, Π“ΠΎΠ»Π»Π°Π½Π΄ΠΈΠΈ ΠΈ России

Австрийская ΠΈΠΌΠΏΠ΅Ρ€Π°Ρ‚Ρ€ΠΈΡ†Π° ΠœΠ°Ρ€ΠΈΡ ВСрСзия сохранила Сдинство своих Ρ‚Π΅Ρ€Ρ€ΠΈΒ­Ρ‚ΠΎΡ€ΠΈΠΉ. ΠΠ°Ρ‡Π°Π»Π°ΡΡŒ Π±ΠΎΡ€ΡŒΠ±Π° прусских Π“ΠΎΠ³Π΅Π½Ρ†ΠΎΠ»Π»Π΅Ρ€Π½ΠΎΠ² ΠΈ австрийских Габсбургов Π·Π° пСрвСнство срСди гСр­манских государств

ΠŸΡ€ΡƒΡΡΠΈΡ, Ан­глия ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π€Ρ€Π°Π½Ρ†ΠΈΠΈ, Австрии, Баксонии, России ΠΈ Π¨Π²Π΅Ρ†ΠΈΠΈ

ВозрастаниС Π²ΠΎΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΡ‰ΠΈ России. НарастаниС ΠΏΡ€ΠΎΒ­Ρ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ АнглиСй ΠΈ Π€Ρ€Π°Π½Ρ†ΠΈΠ΅ΠΉ. Англия ста­новится Π²Π΅Π΄ΡƒΡ‰Π΅ΠΉ колони­альной ΠΈΠΌΠΏΠ΅Ρ€ΠΈΠ΅ΠΉ, ΠΎΡ‚ΠΎΠ±Ρ€Π°Π² Ρƒ Π€Ρ€Π°Π½Ρ†ΠΈΠΈ ΠšΠ°Π½Π°Π΄Ρƒ ΠΈ Π›ΡƒΠ·ΠΈ-Ρ‚Π°Π½ΠΈΡŽ Π² Π‘Π΅Π²Π΅Ρ€Π½ΠΎΠΉ АмСрикС ΠΈ Ρ‡Π°ΡΡ‚ΡŒ Π²Π»Π°Π΄Π΅Π½ΠΈΠΉ Π² Индии

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *