ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ y 2sin 2x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ Ρ ΠΏ
ΠΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡ»ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ»(11 ΠΊΠ»Π°ΡΡ,ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅)
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ»Π°ΠΉΠ΄Π°ΠΌ:
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ 11 ΠΊΠ»Π°ΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π’β 0,ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Ρ ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ +Π’ ΠΈ Ρ -Π’ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° f(x-Π’)=f(x)=f(x+Π’). Π§ΠΈΡΠ»ΠΎ Π’ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ f(x)
ΠΠ°Π΄Π°ΡΠ°1 ΠΠΎΠΊΠ°Π·Π°ΡΡ,ΡΡΠΎ f(x)=sinx+1 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ f(x)=sinx+1 ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° R. f(x+2Ο)=sin(x+2Ο)+1=sinx+1=f(x)
ΠΠ°Π΄Π°ΡΠ° 3 ΠΠΎΠΊΠ°Π·Π°ΡΡ,ΡΡΠΎ f(x)= ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο Π Π΅ΡΠ΅Π½ΠΈΠ΅: x f (x+2Ο)=
ΠΠ°Π΄Π°ΡΠ° 6 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: f(x+Π’)=f(x) ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΡΠΈ n=1
ΠΠ°Π΄Π°ΡΠ° 7 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ n=1 Π’=2Ο
ΠΠ°Π΄Π°ΡΠ° 8 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ y=cosx ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ 2Ο. Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠ°Π΄Π°ΡΠ° 9 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ sin2x ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π° ΡΡΠ½ΠΊΡΠΈΡ cos3x ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΊΡΠ°ΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ,Ρ.Π΅.Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅.Π’=2Ο
ΠΠ°Π΄Π°ΡΠ° 10 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π° ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΊΡΠ°ΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ,Ρ.Π΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅. Π’=6Ο
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Π΅ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π€ΠΠΠ‘ ΠΠ
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: ΡΠ΅ΠΎΡΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ
ΠΡΠ΅ΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ Β«ΠΠ½ΡΠΎΡΡΠΎΠΊΒ»
ΠΠΎΠΌΠ΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°: ΠΠ-233469
ΠΠ΅ Π½Π°ΡΠ»ΠΈ ΡΠΎ ΡΡΠΎ ΠΈΡΠΊΠ°Π»ΠΈ?
ΠΠ°ΠΌ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΡΡΠΈ ΠΊΡΡΡΡ:
ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΉ
ΠΠ²ΡΠΎΡΠΈΠ·ΡΠΉΡΠ΅ΡΡ, ΡΡΠΎΠ±Ρ Π·Π°Π΄Π°Π²Π°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ.
ΠΡΡΠΈΠ½ ΠΏΠΎΡΡΡΠΈΠ» Π½Π΅ ΡΡΠΈΡΠ°ΡΡ Π²ΡΠΏΠ»Π°ΡΡ Π·Π° ΠΊΠ»Π°ΡΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ Π·Π°ΡΠΏΠ»Π°ΡΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π£ΡΠΈΡΠ΅Π»ΡΠΌ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ 1,5 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΡΡΠ±Π»Π΅ΠΉ Π·Π° ΠΏΠ΅ΡΠ΅Π΅Π·Π΄ Π² ΠΠ»Π°ΡΠΎΡΡΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π¨ΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΠΈΠ· Π ΠΎΡΡΠΈΠΈ Π²ΡΠΈΠ³ΡΠ°Π»ΠΈ 8 ΠΌΠ΅Π΄Π°Π»Π΅ΠΉ Π½Π° ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΌ ΡΡΡΠ½ΠΈΡΠ΅ ΠΏΠΎ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΊΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 3 ΠΌΠΈΠ½ΡΡΡ
ΠΠ»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΊ 1 ΡΠ΅Π½ΡΡΠ±ΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΊΠΎΡΠΎΡΠΊΠΈΠ΅ ΡΠΊΡΠΊΡΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠ°ΡΡΡΡΡΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π 2024 Π³ΠΎΠ΄Ρ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠΊΠΎΠ»Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΎΡΠ²ΠΈΡΡΡΡ ΡΠΏΠΎΡΡΠΈΠ²Π½ΡΠΉ ΠΊΠ»ΡΠ±
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 2 ΠΌΠΈΠ½ΡΡΡ
Π ΠΠ΅Π½ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈ ΠΏΡΠΈΠ·Π΅ΡΠΎΠ² ΠΈ ΠΏΠΎΠ±Π΅Π΄ΠΈΡΠ΅Π»Π΅ΠΉ ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Ρ ΠΏΠΎΠ»ΡΡΠ°Ρ Π΄Π΅Π½Π΅ΠΆΠ½ΡΠ΅ ΠΏΠΎΠΎΡΡΠ΅Π½ΠΈΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΎΠ΄Π°ΡΠΎΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠΈΠΊΠ°ΡΡ
ΠΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ ΡΠΏΠΎΡΠ½ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ ΡΡ ΡΠ°ΠΌΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ, Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π° ΡΠ°ΠΉΡΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ Π²ΡΡΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°. ΠΡΠ»ΠΈ ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠ°ΠΉΡΠ° Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡ Π·Π°ΠΊΠΎΠ½Π½ΡΠΌ Π°Π²ΡΠΎΡΠ°ΠΌ. Π§Π°ΡΡΠΈΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ! ΠΠ½Π΅Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΡΠΎΡΠΊΠΎΠΉ Π·ΡΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ².
Π£ΡΠΎΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ
ΡΡΠ±Π±ΠΎΡΠ°, 4 ΡΠ΅Π½ΡΡΠ±ΡΡ 2021 Π³.
Π£ΡΠΎΠΊ 5. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ· ΡΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ°Π·Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π’ β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
β ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ½Π°ΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ (Π½ΠΎ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°) ΡΡΠ΅Π΄ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ. ΠΠ³ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ .
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ².
Ρ = Ρ β [Ρ ] , Π³Π΄Π΅ [Ρ ] β ΡΠ΅Π»Π°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°. ΠΡΠ»ΠΈ ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ 1 , ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ ΡΡΠΎΠ³ΠΎ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ :
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Ρ
sin (Ξ± + 360 Β° ) = sin Ξ±
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Ξ± ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠ° ( 2Ο ΠΈΠ»ΠΈ 360 Β° ) Π½Π΅ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊ Π»ΡΠ±ΠΎΠΌΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΠΏΡΡΡΡ Ξ± β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ», ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Ρ ΠΎΡΡΡ ΠΡ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ ΠΠ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΎΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ tg Ξ± ΠΈ Ρ tg Ξ± Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΊ ΡΠ³Π»Ρ Ξ± ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ»ΡΠΎΠ±ΠΎΡΠΎΡΠΎΠ²:
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΡΠΈΡΠ»Ρ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° T 1 ΠΈ T 2 ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2Ο ΠΈ Π½Π° 2 ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°, Π½Π΅Ρ.
ΠΠ΅ΡΠΈΠΎΠ΄Π° Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ°Π½Π³Π΅Π½Ρ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 180 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡ β ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
Ρos (β13Ο) = Ρos 13Ο = Ρos (Ο + 6 β 2Ο) = Ρos Ο = β1.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΡ β Π½Π΅ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 360 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π°:
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
sin (7Ρ + 7 t ) = sin (7Ρ + 2 Οk ),
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π°:
ΡΠΎ s 0,3Ρ = ΡΠΎ s 0,3(Ρ + t ) = ΡΠΎ s (0,3Ρ + 0,3 t )
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
y = 5 sin 2 x + 2 ctg 3Ρ .
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π°
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ΅ΡΠΈΠΎΠ΄Π° Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2 ΠΈ Π½Π° Ο ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ :
Π’ΠΎΠ³Π΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ (ΠΠΠ) Π±ΡΠ΄Π΅Ρ :
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ :