Докажите что функция является линейной
Линейная функция (ЕГЭ 2022)
Зависимость одной величины от другой математики называют функций одной величины от другой.
Количество денег — это функция вашей зарплаты (иногда говорят «от зарплаты»).
Вес — это функция от съеденных круассанов. Чем меньше съел, тем меньше весишь.
Расстояние — это функция времени. Чем дольше ты будешь идти, тем больше пройдешь.
Ну а теперь перейдем к одному из видов функций – линейной функции.
Линейная функция — коротко о главном
Линейная функция –это функция вида \( y=kx+b\), где \( k\) и \( b\) – любые числа (коэффициенты).
Рассмотрим, как коэффициенты влияют на месторасположение графика:
Общие варианты представлены на рисунке:
Линейная функция
Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: деньги – зарплата, вес – круассаны, расстояние – время.
Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).
То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).
Что значит «допустимому»?
Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» — не все можно подставить в зависимость.
Например, для функции \( y=\sqrt
Ну и вернемся, наконец, к теме данной статьи.
Линейной называется функция вида \( y=kx+b\), где \( k\) и \( b\) – любые числа (они называются коэффициентами).
Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.
Как думаешь, почему она называется линейной?
Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.
Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений \( E\left( y \right)\).
Область определения линейной функции
Какими могут быть значения аргумента линейной функции \( y=kx+b\)? Правильно, любыми. Это значит, что область определения – все действительные числа:
\( D\left( y \right)=\mathbb
А множество значений?
Область значений линейной функции
Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент \( x\), тем больше значение функции \( y\).
Значит, \( y\) так же как и \( x\) может принимать все возможные значения, то есть \( E\left( y \right)=\mathbb
Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?
Вспомним формулу: \( y=kx+b\). Какие нужно выбрать коэффициенты \( k\) и \( b\), чтобы значение функции y не зависело от аргумента \( x\)?
А вот какие: \( b\) – любое, но \( k=0\). И правда, каким бы ни был аргумент \( x\), при умножении на \( k=0\) получится \( 0\)!
Тогда функция станет равна \( y=0\cdot x+b=b\), то есть она принимает одно и то же значение при всех \( x\):
\( y = kx + b:<\rm< >>\left[ \begin
Теперь рассмотрим несколько задач на линейную функцию.
Три задачи на линейную функцию
Решение задачи №1
Пусть начальное значение аргумента равно некому числу \( <
Чему была равна функция до увеличения? Подставляем аргумент в формулу:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Решение задачи №2
Аналогично предыдущей задаче:
Начальное значение аргумента равно \( <
Начальное значение функции: \( <
В этот раз функция не увеличилась, а уменьшилась. Это значит, что конечное значение будет меньше начального, а значит, изменение (разность конечного и начального) будет отрицательным:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Определение прямой пропорциональной зависимости
Если проанализировать решения этих двух задач, можно прийти к важному выводу.
При изменении аргумента линейной функции на \( \Delta x\) функция изменяется на \( k\cdot \Delta x\). То есть изменение функции всегда ровно в \( \mathbf
\) раз больше изменения аргумента.
По сути это является определением прямой пропорциональной зависимости.
Решение задачи №3
Подставим известные значения аргумента и функции в формулу \( y=kx+b\):
Получили два уравнения относительно \( k\) и \( b\). Теперь достаточно решить систему этих двух уравнений:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
График линейной функции
Как я уже упоминал ранее, график такой функции – прямая линия.
Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).
Предположим, у нас есть функция линейная функция \( y=2x+1\). Чтобы построить ее график, нужно вычислить координаты любых двух точек.
То есть нужно взять любые два значения аргумента \( x\) и вычислить соответствующие два значения функции.
Затем для каждой пары \( \left( x;y \right)\) найдем точку в системе координат, и проведем прямую через эти две точки.
Проще всего найти функцию, если аргумент \( x=0:y\left( 0 \right)=2\cdot 0+1=1\).
Итак, первая точка имеет координаты \( \left( 0;1 \right)\).
Теперь возьмем любое другое число в качестве \( x\), например, \( x=1:y\left( 1 \right)=2\cdot 1+1=3\).
Вторая точка имеет координаты \( \left( 1;3 \right)\).
Ставим эти две точки на координатной плоскости:
Теперь прикладываем линейку, и проводим прямую через эти две точки:
Вот и все, график построен!
Давай теперь на этом же рисунке построим еще два графика: \( y=
Построй их самостоятельно так же: посчитай значение y для любых двух значений \( x\), отметь эти точки на рисунке и проведи через них прямую.
Должно получиться так:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Видно, что все три прямые по-разному наклонены и в разных точках пересекают координатные оси. Все дело тут в коэффициентах \( \displaystyle k\) и \( \displaystyle b\).
Давай разберемся, на что они влияют.
Коэффициенты линейной функции
Для начала выясним, что делает коэффициент \( \displaystyle b\). Рассмотрим функцию \( \displaystyle y=x+b\), то есть \( \displaystyle k=1\).
Меняя \( \displaystyle b\) будем следить, что происходит с графиком.
Что ты можешь сказать о них? Чем отличаются графики?
Это сразу видно: чем больше \( \displaystyle b\), тем выше располагается прямая.
Более того, заметь такую вещь: график пересекает ось \( \displaystyle \mathbf
И правда. Как найти точку пересечения графика с осью \( \displaystyle y\)? Чему равен \( \displaystyle x\) в такой точке?
В любой точке оси ординат (это название оси \( \displaystyle y\), если ты забыл) \( \displaystyle x=0\).
Значит достаточно подставить \( \displaystyle x=0\) в функцию, и получим ординату пересечения графика с осью \( \displaystyle y\):
\( \displaystyle y=k\cdot 0+b=b\)
Теперь по поводу \( \displaystyle k\). Рассмотрим функцию \( \displaystyle \left( b=0 \right).\) Будем менять \( \displaystyle k\) и смотреть, что происходит с графиком.
Так, теперь ясно: \( \displaystyle k\) влияет на наклон графика.
Чем больше \( \displaystyle k\) по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс – \( \displaystyle Ox\)) расположена прямая.
Если \( \displaystyle k>0\), график наклонен «вправо», при \( \displaystyle k
Выберем на графике две точки \( \displaystyle A\) и \( \displaystyle B\). Для простоты выберем точку \( \displaystyle A\) на пересечении графика с осью ординат. Точка \( \displaystyle B\) – в произвольном месте прямой, пусть ее координаты равны \( \displaystyle \left( x;y \right)\).
Рассмотрим прямоугольный треугольник \( \displaystyle ABC\), построенный на отрезке \( \displaystyle AB\) как на гипотенузе.
Из рисунка видно, что \( \displaystyle AC=x\), \( \displaystyle BC=y-b\).
Подставим \( \displaystyle y=kx+b\) в \( \displaystyle BC:BC=y-b=kx+b-b=kx\).
Получается, что \( BC = k \cdot AC<\rm< >> \Rightarrow <\rm< >>k = \frac<
Итак, коэффициент \( \displaystyle k\) равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс.
Именно поэтому его (коэффициент \( \displaystyle k\)) обычно называют угловым коэффициентом.
В случае, когда \( k
Если же \( \displaystyle k=0\), тогда и \( <\mathop<\rm tg>\nolimits> \alpha = 0,\) следовательно \( \displaystyle \alpha =0\), то есть прямая параллельна оси абсцисс.
Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.
Разбор еще трех задач на линейную функцию
1. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.
2. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.
3. График какой из функций изображен на рисунке?
Решение задачи №1
Коэффициент \( b\) найти проще простого – это ведь точка пересечения графика с осью \( \displaystyle Oy\):
Угловой коэффициент \( \displaystyle k\) – это тангенс угла наклона прямой.
Для его нахождения выберем две точки \( \displaystyle A\) и \( \displaystyle B\) на графике и построим прямоугольный треугольник с гипотенузой \( \displaystyle AB\):
График линейной функции, его свойства и формулы
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
Функция | Коэффициент «k» | Коэффициент «b» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!
Свойства линейной функции
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Учебное пособие по алгебре на тему «Линейные функции»
Выбранный для просмотра документ Линейные функции.doc
ГБПОУ «Колледж автоматизации и информационных технологий№20»
Пример 2.1. Пусть задана линейная функция y = 2 x + 1. Вычислим ее значения для x = 1, 2, 3. Для первого значения аргумента значение функции y = 2 + 1 = 3, для второго y = 4 + 1 = 5, для третьего y = 6 + 1 = 7. Итак, получение конкретных значений линейной функции для конкретных аргументов не вызывает трудностей, для этого используется одно умножение на константу и одно сложение с константой. Как мы уже говорили, задание функции, когда ее аргумент принимает бесконечное множество значений, невозможно иначе, как только представляя функцию аналитически. Аналитический метод позволяет легко и абсолютно точно задать функцию, но обладает одним недостатком – он не дает возможность наглядного представления функции. С другой стороны, графическое представление функции дает возможность увидеть важные свойства функции, но не дает искомой точности. Графически рассматриваемая функция y = 2 x + 1 представлена на рис. 2.1. Здесь она задана на интервале [-10, 10]. На первый взгляд график этой функции есть прямая линия. Докажем, что действительно, график любой линейной функции есть прямая линия.
Р
ис. 2.1. График линейной функции 2 x + 1
Рис. 2.2. Две точки графика линейной функции
Следствие. График линейной функции y = kx + b , где k и b суть константы, есть прямая линия, пересекающая ось абсцисс в точке A ( —, 0) и ось ординат – в точке B (0, b ).
Доказательство вытекает из простой подстановки x = 0 – определяем ординату точки пересечения с осью ординат при нулевом значении абсциссы, и y = 0 – определяем точку пересечения с осью абсцисс при нулевой ординате.
Итак, чтобы построить график линейной функции, необходимо провести прямую линию через две точки A ( —, 0) и B (0, b ).
Обратим внимание на следующий факт. Точка B (0, b ) располагается на оси ординат и ее положение полностью определяется свободным членом b линейной функции. Если b > 0, то эта точка располагается над осью абсцисс, в противном случае, т.е. когда b
С помощью планшета построить прямоугольную систему координат, так, чтобы в ней можно было строить точки с абсолютными значениями абсцисс и ординат не менее 5.
Задачка: Через два года мой мальчик будет вдвое старше, чем был два года назад. А девочка моя будет через три года втрое старше, чем три года назад. Кто старше: мальчик или девочка.
Ответ : Ни тот, ни другая не старше: они близнецы, и каждому из них в данное время по шесть лет. Возраст находят простым расчетом: через два года мальчик будет на четыре года старше, чем два года назад, и притом вдвое старше; значит, четыре года — это возраст его два года назад, и, следовательно, сейчас ему 4 + 2 = 6 лет. Таков же и возраст девочки.
Рис. 2.3. График линейной функции при k > 0 и b > 0
Если k растет бесконечно по абсолютному значению, то график все ближе приближается к вертикальной линии, впрочем, никогда не превращаясь в нее окончательно. Естественно, что при этом угол наклона при k > 0 – обладает положительным тангенсом (т.е. сам положительный), а при k
Рис. 2.4. График линейной функции при k > 0 и b
Случай, когда k b k прямая приближается к вертикальной, при неограниченном приближении k к нулю прямая приближается к горизонтальной линии.
Рис. 2.6. График линейной функции при k b
С помощью планшета построить прямоугольную систему координат так, чтобы в каждую сторону от ее начал можно было отложить не менее 5 см.
На планшете в построенной прямоугольной системе координат построить графики функций y = 2 x + 4, y = 2 x – 4. Объяснить их различия.
Рис. 2.7. Задание для построения линейной функции
Как выглядит уравнение вертикальной прямой, проходящей через точку A (5, 0)? Является ли эта прямая графиком линейной функции?
Задачка: Напишите подряд семь цифр от 1 до 7: 1234567. Легко соединить их знаками плюс и минус так, чтобы получилось 40:
12 + 34-5 + 6-7 = 40. Попробуйте найти другое сочетание тех же цифр, при котором получилось бы не 40, а 55.
Ответ : Задача имеет не одно, а три разных решения: 123+4 — 5 — 67 = 55;
1-2 — 3 — 4 + 56 + 7 = 55;
Задачка: Напишите по порядку девять цифр: 123456789.Вы можете, не меняя их порядка, вставить между ними знаки плюс и минус таким образом, чтобы в результате получилось ровно 100.Нетрудно, например, вставив плюс и минус шесть раз, получить 100 таким путем:
12 + 3-4 + 5 + 67 + 8 + 9= 100.
Ответ : Вот каким способом можете вы получить 100 из ряда девяти цифр и трех знаков плюс и минус: 123—45—67 + 89 = 100. Это — единственное решение; никакое другое сочетание девяти цифр и знаков плюс и минус, употребленных три раза, не дает в результате 100. Достигнуть того же результата, употребив знаки сложения и вычитания менее трех раз, невозможно.
Линейные отображения: определение, примеры, свойства
Определение линейных отображений
Напомним основные определения, связанные с понятием отображения (функции, оператора).
— инъективным, если разным элементам множества соответствуют разные образы: ;
— сюръективным, если для каждого элемента из множества имеется хотя бы один прообраз: ;
— биективным (взаимно однозначным), если оно инъективно и сюръективно одновременно.
Пусть и — линейные пространства (над одним и тем же числовым полем). Отображение называется линейным, если
2. и любого числа (из данного числового поля).
2. Условия аддитивности и однородности можно заменить одним условием линейности отображения:
и любых чисел и из данного числового поля.
3. При линейном отображении образ линейной комбинации является линейной комбинацией образов:
4. Взаимно однозначное линейное отображение является изоморфизмом.
Примеры линейных отображений
Свойства линейных отображений
Пусть — линейное отображение.
1. Если векторы линейно зависимы, то их образы также линейно зависимы.
4. Композиция линейных отображений является линейным отображением.
Однородность отображения доказывается аналогично.
5. Если линейное отображение обратимое (взаимно однозначное), то обратное отображение — линейное.
Докажем, например, аддитивность обратного отображения
6. Линейное отображение конечномерного пространства однозначно задается образами базисных векторов.