Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Вопрос 3. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.1. ГомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия.

ΠŸΡ€ΠΈ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ \(X\) ΠΈ \(Y\) пСрСходят Π² Ρ‚ΠΎΡ‡ΠΊΠΈ \(X’\) ΠΈ \(Y’\) Π½Π° Π»ΡƒΡ‡Π°Ρ… \(OX\) ΠΈ \(OY\) соотвСтствСнно, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ \(OX’ = k\cdot OX\), \(OY’ = k\cdot OY\). ΠžΡ‚ΡΡŽΠ΄Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ равСнства

\(\overline = k\overline,\, \overline = k\overline\).

Вычитая эти равСнства ΠΏΠΎΡ‡Π»Π΅Π½Π½ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

\(\overline — \overline = k(\overline — \overline)\).

Π’Π°ΠΊ ΠΊΠ°ΠΊ \(\overline — \overline = \overline\), \(\overline — \overline = \overline\), Ρ‚ΠΎ \(\overline = k\overline\). Π—Π½Π°Ρ‡ΠΈΡ‚, \(|\overline| = k|\overline|\), Ρ‚.Π΅. \(X’Y’ = kXY\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

Вопрос 4. КакиС свойства прСобразования подобия Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅? Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ полупрямыми.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ для двиТСния, доказываСтся, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ подобия Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ \(A, B, C\), Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, пСрСходят Π² Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ \(A_1, B_1, C_1\), Ρ‚Π°ΠΊΠΆΠ΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ Ссли Ρ‚ΠΎΡ‡ΠΊΠ° \(B\) Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ \(A\) ΠΈ \(C\), Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° \(B_1\) Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ \(A_1\) ΠΈ \(C_1\). ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ прямыС Π² прямыС, полупрямыС Π² полупрямыС, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ.

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ полупрямыми.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡƒΡΡ‚ΡŒ ΡƒΠ³ΠΎΠ» \(ABC\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия с коэффициСнтом \(k\) пСрСводится Π² ΡƒΠ³ΠΎΠ» \(A_1B_1C_1\) (рис. 237). ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ ΡƒΠ³ΠΎΠ» \(ABC\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ \(B\) с коэффициСнтом Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ \(k\). ΠŸΡ€ΠΈ этом Ρ‚ΠΎΡ‡ΠΊΠΈ \(A\) ΠΈ \(C\) ΠΏΠ΅Ρ€Π΅ΠΉΠ΄ΡƒΡ‚ Π² Ρ‚ΠΎΡ‡ΠΊΠΈ \(A_2\) ΠΈ \(C_2\). Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2BC_2\) ΠΈ \(A_1B_1C_1\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ. Из равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² слСдуСт равСнство ΡƒΠ³Π»ΠΎΠ² \(A_2BC_2\) ΠΈ \(A_1B_1C_1\). Π—Π½Π°Ρ‡ΠΈΡ‚, ΡƒΠ³Π»Ρ‹ \(ABC\) ΠΈ \(A_1B_1C_1\) Ρ€Π°Π²Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Вопрос 5. КакиС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ?

ΠžΡ‚Π²Π΅Ρ‚. Π”Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ пСрСводятся Π΄Ρ€ΡƒΠ³ Π² Π΄Ρ€ΡƒΠ³Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия.

Вопрос 6. Каким Π·Π½Π°ΠΊΠΎΠΌ обозначаСтся ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€? Как записываСтся ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²?

ΠžΡ‚Π²Π΅Ρ‚. Для обозначСния подобия Ρ„ΠΈΠ³ΡƒΡ€ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π·Π½Π°Ρ‡ΠΎΠΊ: \(\sim\).

Π—Π°ΠΏΠΈΡΡŒ \(F\sim F’\) читаСтся Ρ‚Π°ΠΊ: «Π€ΠΈΠ³ΡƒΡ€Π° \(F\) ΠΏΠΎΠ΄ΠΎΠ±Π½Π° Ρ„ΠΈΠ³ΡƒΡ€Π΅ \(F’\)».

Π—Π°ΠΏΠΈΡΡŒ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\): \(\triangle ABC \sim \triangle A_1B_1C_1\).

Вопрос 7. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.2. Если Π΄Π²Π° ΡƒΠ³Π»Π° ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΡƒΡΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\) \(\angle A = \angle A_1\), \(\angle B = \angle B_1\). Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ \(\triangle ABC \sim \triangle A_1B_1C_1\).

ΠŸΡƒΡΡ‚ΡŒ \(k = \frac\). ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_1B_1C_1\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ подобия с коэффициСнтом подобия \(k\), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ (рис. 238). ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_2B_2C_2\), Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ \(ABC\). Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Ρ‚ΠΎ \(\angle A_2 = \angle A_1\), \(\angle B_2 = \angle B_1\). А Π·Π½Π°Ρ‡ΠΈΡ‚, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_2B_2C_2\) \(\angle A = \angle A_2\), \(\angle B = \angle B_2\). Π”Π°Π»Π΅Π΅, \(A_2B_2 = kA_1B_1 = AB\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(A_2B_2C_2\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ (ΠΏΠΎ сторонС ΠΈ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠΈΡ‰ΠΈΠΌ ΠΊ Π½Π΅ΠΉ ΡƒΠ³Π»Π°ΠΌ).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(A_2B_2C_2\) Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π½Ρ‹ ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2B_2C_2\) ΠΈ \(ABC\) Ρ€Π°Π²Π½Ρ‹ ΠΈ поэтому Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(ABC\) ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Вопрос 8. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.3. Если Π΄Π²Π΅ стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ Π΄Π²ΡƒΠΌ сторонам Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΡƒΠ³Π»Ρ‹, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ этими сторонами, Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 11.2). ΠŸΡƒΡΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\) \(\angle C = \angle C_1\) ΠΈ \(AC = kA_1C_1\), \(BC = kB_1C_1\). Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ \(\triangle ABC \sim \triangle A_1B_1C_1\).

ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_1B_1C_1\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ подобия с коэффициСнтом подобия \(k\), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ (рис. 240). ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_2B_2C_2\), Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ \(ABC\). Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Ρ‚ΠΎ \(\angle C_2 = \angle C_1\). А Π·Π½Π°Ρ‡ΠΈΡ‚, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_2B_2C_2\) \(\angle C = \angle C_2\). Π”Π°Π»Π΅Π΅, \(A_2C_2 = kA_1C_1 = AC\), \(B_2C_2 = kB_1C_1 = BC\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(A_2B_2C_2\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ (ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(A_2B_2C_2\) Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π½Ρ‹ ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2B_2C_2\) ΠΈ \(ABC\) Ρ€Π°Π²Π½Ρ‹ ΠΈ поэтому Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(ABC\) ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Вопрос 9. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.4. Если стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ сторонам Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 11.2). ΠŸΡƒΡΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\) \(AB = kA_1B_1\), \(AC = kA_1C_1\), \(BC = kB_1C_1\). Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ \(\triangle ABC \sim \triangle A_1B_1C_1\).

ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_1B_1C_1\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ подобия с коэффициСнтом подобия \(k\), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ (рис. 242). ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_2B_2C_2\), Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ \(ABC\). Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ стороны Ρ€Π°Π²Π½Ρ‹:

\(A_2B_2 = kA_1B_1 = AB\),

\(A_2C_2 = kA_1C_1 = AC\),

\(B_2C_2 = kB_1C_1 = BC\).

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(A_2B_2C_2\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ (ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(A_2B_2C_2\) Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π½Ρ‹ ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2B_2C_2\) ΠΈ \(ABC\) Ρ€Π°Π²Π½Ρ‹ ΠΈ поэтому Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(ABC\) ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Вопрос 10. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΅ΡΡ‚ΡŒ срСднСС ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ этого ΠΊΠ°Ρ‚Π΅Ρ‚Π° Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρƒ.

ΠžΡ‚Π²Π΅Ρ‚. Π£ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠ΄ΠΈΠ½ ΡƒΠ³ΠΎΠ» прямой. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ 11.2 для подобия Π΄Π²ΡƒΡ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρƒ Π½ΠΈΡ… Π±Ρ‹Π»ΠΎ ΠΏΠΎ Ρ€Π°Π²Π½ΠΎΠΌΡƒ острому ΡƒΠ³Π»Ρƒ.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(CBD\) ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ ΡƒΠ³ΠΎΠ» ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ \(B\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΠ½ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹: \(\triangle ABC \sim \triangle CBD\). Из подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² слСдуСт ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сторон:

Π­Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Ρ‚Π°ΠΊ: ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΅ΡΡ‚ΡŒ срСднСС ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ этого ΠΊΠ°Ρ‚Π΅Ρ‚Π° Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρƒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Вопрос 3. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.1. ГомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия.

ΠŸΡ€ΠΈ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ \(X\) ΠΈ \(Y\) пСрСходят Π² Ρ‚ΠΎΡ‡ΠΊΠΈ \(X’\) ΠΈ \(Y’\) Π½Π° Π»ΡƒΡ‡Π°Ρ… \(OX\) ΠΈ \(OY\) соотвСтствСнно, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ \(OX’ = k\cdot OX\), \(OY’ = k\cdot OY\). ΠžΡ‚ΡΡŽΠ΄Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ равСнства

\(\overline = k\overline,\, \overline = k\overline\).

Вычитая эти равСнства ΠΏΠΎΡ‡Π»Π΅Π½Π½ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

\(\overline — \overline = k(\overline — \overline)\).

Π’Π°ΠΊ ΠΊΠ°ΠΊ \(\overline — \overline = \overline\), \(\overline — \overline = \overline\), Ρ‚ΠΎ \(\overline = k\overline\). Π—Π½Π°Ρ‡ΠΈΡ‚, \(|\overline| = k|\overline|\), Ρ‚.Π΅. \(X’Y’ = kXY\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

Вопрос 4. КакиС свойства прСобразования подобия Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅? Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ полупрямыми.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ для двиТСния, доказываСтся, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ подобия Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ \(A, B, C\), Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, пСрСходят Π² Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ \(A_1, B_1, C_1\), Ρ‚Π°ΠΊΠΆΠ΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ Ссли Ρ‚ΠΎΡ‡ΠΊΠ° \(B\) Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ \(A\) ΠΈ \(C\), Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° \(B_1\) Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ \(A_1\) ΠΈ \(C_1\). ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ прямыС Π² прямыС, полупрямыС Π² полупрямыС, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ.

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ полупрямыми.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡƒΡΡ‚ΡŒ ΡƒΠ³ΠΎΠ» \(ABC\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия с коэффициСнтом \(k\) пСрСводится Π² ΡƒΠ³ΠΎΠ» \(A_1B_1C_1\) (рис. 237). ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ ΡƒΠ³ΠΎΠ» \(ABC\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ \(B\) с коэффициСнтом Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ \(k\). ΠŸΡ€ΠΈ этом Ρ‚ΠΎΡ‡ΠΊΠΈ \(A\) ΠΈ \(C\) ΠΏΠ΅Ρ€Π΅ΠΉΠ΄ΡƒΡ‚ Π² Ρ‚ΠΎΡ‡ΠΊΠΈ \(A_2\) ΠΈ \(C_2\). Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2BC_2\) ΠΈ \(A_1B_1C_1\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ. Из равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² слСдуСт равСнство ΡƒΠ³Π»ΠΎΠ² \(A_2BC_2\) ΠΈ \(A_1B_1C_1\). Π—Π½Π°Ρ‡ΠΈΡ‚, ΡƒΠ³Π»Ρ‹ \(ABC\) ΠΈ \(A_1B_1C_1\) Ρ€Π°Π²Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Вопрос 5. КакиС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ?

ΠžΡ‚Π²Π΅Ρ‚. Π”Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ пСрСводятся Π΄Ρ€ΡƒΠ³ Π² Π΄Ρ€ΡƒΠ³Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия.

Вопрос 6. Каким Π·Π½Π°ΠΊΠΎΠΌ обозначаСтся ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€? Как записываСтся ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²?

ΠžΡ‚Π²Π΅Ρ‚. Для обозначСния подобия Ρ„ΠΈΠ³ΡƒΡ€ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π·Π½Π°Ρ‡ΠΎΠΊ: \(\sim\).

Π—Π°ΠΏΠΈΡΡŒ \(F\sim F’\) читаСтся Ρ‚Π°ΠΊ: «Π€ΠΈΠ³ΡƒΡ€Π° \(F\) ΠΏΠΎΠ΄ΠΎΠ±Π½Π° Ρ„ΠΈΠ³ΡƒΡ€Π΅ \(F’\)».

Π—Π°ΠΏΠΈΡΡŒ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\): \(\triangle ABC \sim \triangle A_1B_1C_1\).

Вопрос 7. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.2. Если Π΄Π²Π° ΡƒΠ³Π»Π° ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΡƒΡΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\) \(\angle A = \angle A_1\), \(\angle B = \angle B_1\). Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ \(\triangle ABC \sim \triangle A_1B_1C_1\).

ΠŸΡƒΡΡ‚ΡŒ \(k = \frac\). ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_1B_1C_1\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ подобия с коэффициСнтом подобия \(k\), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ (рис. 238). ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_2B_2C_2\), Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ \(ABC\). Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Ρ‚ΠΎ \(\angle A_2 = \angle A_1\), \(\angle B_2 = \angle B_1\). А Π·Π½Π°Ρ‡ΠΈΡ‚, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_2B_2C_2\) \(\angle A = \angle A_2\), \(\angle B = \angle B_2\). Π”Π°Π»Π΅Π΅, \(A_2B_2 = kA_1B_1 = AB\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(A_2B_2C_2\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ (ΠΏΠΎ сторонС ΠΈ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠΈΡ‰ΠΈΠΌ ΠΊ Π½Π΅ΠΉ ΡƒΠ³Π»Π°ΠΌ).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(A_2B_2C_2\) Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π½Ρ‹ ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2B_2C_2\) ΠΈ \(ABC\) Ρ€Π°Π²Π½Ρ‹ ΠΈ поэтому Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(ABC\) ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Вопрос 8. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.3. Если Π΄Π²Π΅ стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ Π΄Π²ΡƒΠΌ сторонам Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΡƒΠ³Π»Ρ‹, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ этими сторонами, Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 11.2). ΠŸΡƒΡΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\) \(\angle C = \angle C_1\) ΠΈ \(AC = kA_1C_1\), \(BC = kB_1C_1\). Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ \(\triangle ABC \sim \triangle A_1B_1C_1\).

ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_1B_1C_1\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ подобия с коэффициСнтом подобия \(k\), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ (рис. 240). ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_2B_2C_2\), Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ \(ABC\). Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Ρ‚ΠΎ \(\angle C_2 = \angle C_1\). А Π·Π½Π°Ρ‡ΠΈΡ‚, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_2B_2C_2\) \(\angle C = \angle C_2\). Π”Π°Π»Π΅Π΅, \(A_2C_2 = kA_1C_1 = AC\), \(B_2C_2 = kB_1C_1 = BC\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(A_2B_2C_2\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ (ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(A_2B_2C_2\) Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π½Ρ‹ ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2B_2C_2\) ΠΈ \(ABC\) Ρ€Π°Π²Π½Ρ‹ ΠΈ поэтому Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(ABC\) ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Вопрос 9. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам.

ΠžΡ‚Π²Π΅Ρ‚. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 11.4. Если стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ сторонам Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 11.2). ΠŸΡƒΡΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² \(ABC\) ΠΈ \(A_1B_1C_1\) \(AB = kA_1B_1\), \(AC = kA_1C_1\), \(BC = kB_1C_1\). Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ \(\triangle ABC \sim \triangle A_1B_1C_1\).

ΠŸΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_1B_1C_1\) ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ подобия с коэффициСнтом подобия \(k\), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ (рис. 242). ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(A_2B_2C_2\), Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ \(ABC\). Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ стороны Ρ€Π°Π²Π½Ρ‹:

\(A_2B_2 = kA_1B_1 = AB\),

\(A_2C_2 = kA_1C_1 = AC\),

\(B_2C_2 = kB_1C_1 = BC\).

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(A_2B_2C_2\) Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ (ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(A_2B_2C_2\) Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π½Ρ‹ ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_2B_2C_2\) ΠΈ \(ABC\) Ρ€Π°Π²Π½Ρ‹ ΠΈ поэтому Ρ‚ΠΎΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(A_1B_1C_1\) ΠΈ \(ABC\) ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Вопрос 10. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΅ΡΡ‚ΡŒ срСднСС ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ этого ΠΊΠ°Ρ‚Π΅Ρ‚Π° Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρƒ.

ΠžΡ‚Π²Π΅Ρ‚. Π£ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠ΄ΠΈΠ½ ΡƒΠ³ΠΎΠ» прямой. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ 11.2 для подобия Π΄Π²ΡƒΡ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρƒ Π½ΠΈΡ… Π±Ρ‹Π»ΠΎ ΠΏΠΎ Ρ€Π°Π²Π½ΠΎΠΌΡƒ острому ΡƒΠ³Π»Ρƒ.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ \(ABC\) ΠΈ \(CBD\) ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ ΡƒΠ³ΠΎΠ» ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ \(B\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΠ½ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹: \(\triangle ABC \sim \triangle CBD\). Из подобия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² слСдуСт ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сторон:

Π­Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Ρ‚Π°ΠΊ: ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΅ΡΡ‚ΡŒ срСднСС ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ этого ΠΊΠ°Ρ‚Π΅Ρ‚Π° Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρƒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ»Π°Π½ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ. Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 9

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

1.ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия ΠΈ Π΅Π³ΠΎ свойства

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия называСтся ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ G Π² Ρ„ΠΈΠ³ΡƒΡ€Ρƒ G’, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ измСняСтся Π² ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎΠΆΠ΅ число Ρ€Π°Π·. Π’.Π΅. ОA’ = k OA. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для Π»ΡŽΠ±Ρ‹Ρ… Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ выполняСтся равСнство A’B’ = k AB. (Рис.1) Число k называСтся коэффициСнтом подобия.

Если Π²Π·ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Ρ‚ΠΎΡ‡ΠΊΡƒ О. И ΠΎΡ‚Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ OB’ = k OB, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ G Π² Ρ„ΠΈΠ³ΡƒΡ€Ρƒ G’ называСтся Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠ΅ΠΉ. А число k называСтся коэффициСнтом Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия.

Бвойства прСобразования подобия

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ прямыС Π² прямыС, полупрямыС Π² полупрямыС, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΈ ΠΏΡ€ΠΈ этом ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ΡΡ.

6.ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ρ„ΠΈΠ³ΡƒΡ€Π° подобная окруТности, Π΅ΡΡ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ:

Π—Π°Π΄Π°Π΄ΠΈΠΌ Π½Π° плоскости систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ с осями Оx ΠΈ Oy Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€ ΠΏΠ΅Ρ€Π²ΠΎΠΉ окруТности F совпал с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ пСрСносом пСрСмСстим Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ F’ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΅Π΅ Ρ†Π΅Π½Ρ‚Ρ€ Ρ‚Π°ΠΊΠΆΠ΅ совпал с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. На окруТности F возьмСм Π΄Π²Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ А ΠΈ Π’. И ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Ρ…ΠΎΡ€Π΄Ρƒ. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΊ этим Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ радиусы ОА ΠΈ ΠžΠ’, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄Π»ΠΈΠΌ Π΄ΠΎ окруТности F’, Ρ‚.Π΅. ОA’ ΠΈ OB’. Оси Оx ΠΈ Оy ΠΏΠΎΠ²Π΅Ρ€Π½Π΅ΠΌ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ось Oy пСрСсСкала Ρ…ΠΎΡ€Π΄Ρƒ ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ (Рис.7). Π’ΠΎΠ³Π΄Π° k OA = OA’.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ОАБ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.7 Π—Π°Π΄Π°Ρ‡Π°. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ρ„ΠΈΠ³ΡƒΡ€Π° подобная окруТности, Π΅ΡΡ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ ΠΏΡ€ΠΈΡˆΠ»ΠΈ ΠΊ Π²Ρ‹Π²ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ A’B’ = k AB. А это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ окруТности F’ Π² k Ρ€Π°Π· большС, Ρ‡Π΅ΠΌ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π² окруТности F, Ρ‚.Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ F’ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия ΠΈΠ»ΠΈ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠ΅ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ О. А это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ окруТности F ΠΈ F’ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Π£ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² АВБ ΠΈ А1Π’1Π‘1 ∠A = ∠A1, ∠B = ∠B1. AB = 6, AC = 9, A1B1 = 10, B1C1 = 10. НайдитС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

РСшСниС:

ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½Ρ‹ Π΄Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ ΠΈ А1Π’1Π‘1 ∠A = ∠A1, ∠B = ∠B1 (Рис.8). Π”Π°Π½Π½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ: ∠A = ∠A1 ΠΈ βˆ Π’ = ∠B1. ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ всС стороны Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ сторон ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π² k число Ρ€Π°Π·, Ρ‚.Π΅. коэффициСнт подобия. НайдСм число k:

k = AB / А1Π’1 = 6 / 10 = 3 / 5

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ

Π’Π‘ = k * Π’1Π‘1 = (3 / 5) * 10 = 6 см

А1Б1 = АБ / k = 9 / (3 / 5) = 15 см

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.8 Π—Π°Π΄Π°Ρ‡Π°. Π£ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² АВБ ΠΈ А1Π’1Π‘1.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Π’ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ABCD основаниС АD = 32 см, Π° основаниС Π’Π‘ = 8 см. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ диагональю АБ ΠΈ стороной Π‘D Ρ€Π°Π²Π΅Π½ ΡƒΠ³Π»Ρƒ βˆ ΠΠ’Π‘, Ρ‚.Π΅. βˆ ΠΠ’Π‘ = ∠АБD. НайдитС диагональ АБ.

РСшСниС:

Π’ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄Π²Π° основания Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых (Рис.9). ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» ∠CAD = ∠BCA, ΠΊΠ°ΠΊ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ АВБ ΠΈ АБD ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ: ∠AΠ’Π‘ = ∠АCD ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ, ∠CAD = ∠BCA, ΠΊΠ°ΠΊ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹.

Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.9 Π—Π°Π΄Π°Ρ‡Π°. Π’ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ABCD основаниС АD = 32 см.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’ ΠΎΡΡ‚Ρ€ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ АВБ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ высоты AD, BE, CF. НайдитС ΡƒΠ³Π»Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° DEF, Ссли Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ АВБ ∠А = Ξ±, βˆ Π’ = Ξ², ∠Б = Ξ³.

РСшСниС:

Рассмотрим Π΄Π²Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° AFC ΠΈ ABE. Они ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ острому ΡƒΠ³Π»Ρƒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΡƒΠ³ΠΎΠ» ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ А Ρƒ Π½ΠΈΡ… ΠΎΠ±Ρ‰ΠΈΠΉ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ» ∠FCE = ∠ABE. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Π΅Π³ΠΎ ΠΊΠ°ΠΊ Ο•3. Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ:

Рассмотрим Π΄Π²Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° AFO ΠΈ DOC. Они ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ острому ΡƒΠ³Π»Ρƒ: ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ О Ρ€Π°Π²Π½Ρ‹ ΠΊΠ°ΠΊ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ (Рис.10). ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ FOD ΠΈ AOC Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ OD / OF = OC / AO

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, OD / OΠ‘ = OF / AO

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт равСнство ΡƒΠ³Π»ΠΎΠ²:

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ BFO ΠΈ EOC ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹. Π£ Π½ΠΈΡ… ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ О Ρ€Π°Π²Π½Ρ‹ ΠΊΠ°ΠΊ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅, Π° ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π°Ρ… F ΠΈ E прямыС. ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² FOE ΠΈ BOC. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.10 Π—Π°Π΄Π°Ρ‡Π°. Π’ ΠΎΡΡ‚Ρ€ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ АВБ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ο•1 + Ο•2 + Ο•3 = 90Β° (ΠΈΠ· ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BFC), Ρ‚ΠΎ Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ FDE ΡƒΠ³ΠΎΠ» ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ F Ρ€Π°Π²Π΅Π½:

Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ выводится, Ρ‡Ρ‚ΠΎ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC вписан Ρ€ΠΎΠΌΠ± ADEF, Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» А Ρƒ Π½ΠΈΡ… ΠΎΠ±Ρ‰ΠΈΠΉ, Π° Π²Π΅Ρ€ΡˆΠΈΠ½Π° Π• находится Π½Π° сторонС Π’Π‘. АВ = 12 см, АБ = 4 см. НайдитС сторону Ρ€ΠΎΠΌΠ±Π°.

РСшСниС:

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρƒ Ρ€ΠΎΠΌΠ±Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ АВБ ΠΈ DBE ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ: ∠А = ∠D, ∠C = ∠E ΠΊΠ°ΠΊ соотвСтствСнныС (Рис.11).

Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.11 Π—Π°Π΄Π°Ρ‡Π°. Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC вписан Ρ€ΠΎΠΌΠ± ADEF.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *

Главная > Π£Ρ‡Π΅Π±Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ > ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: ΠŸΠ»Π°Π½ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ. Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 9
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.1 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия ΠΈ Π΅Π³ΠΎ свойства.

2.ПодобиС Ρ„ΠΈΠ³ΡƒΡ€. ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ

Π”Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ, Ссли ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия ΠΎΠ½ΠΈ пСрСходят Π΄Ρ€ΡƒΠ³ Π² Π΄Ρ€ΡƒΠ³Π°. (Рис.2)

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Если Π΄Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ.

Из свойств прСобразования подобия слСдуСт, Ρ‡Ρ‚ΠΎ Ρƒ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ„ΠΈΠ³ΡƒΡ€, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΠ²ΡƒΡŽΡ‰ΠΈΠ΅ стороны ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.2 ПодобиС Ρ„ΠΈΠ³ΡƒΡ€.

ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ

Если Π΄Π²Π° ΡƒΠ³Π»Π° ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹. (Рис.3)

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ это ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½Ρ‹ Π΄Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΠΈ A’B’C’.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A’B’C’ Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A»B»C» с коэффициСнтом k, Ρ‚.Π΅. ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A»B»C» Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ ABC ΠΏΠΎ сторонС ΠΈ ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰ΠΈΠΌ ΠΊ Π½Π΅ΠΉ ΡƒΠ³Π»Π°ΠΌ. Π’.ΠΊ. ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Π° расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ измСняСтся Π² k Ρ€Π°Π·. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ A’B’C’ ΠΈ A»B»C» ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹. А Ρ‚.ΠΊ. Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ABC ΠΈ A»B»C» Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ A’B’C’.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.3 ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ.

3.ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ

Если Π΄Π²Π΅ стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ Π΄Π²ΡƒΠΌ сторонам Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ этими сторонами Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ это ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅. (Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ подобия ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ) ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½Ρ‹ Π΄Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΠΈ A’B’C’.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A’B’C’ Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A»B»C» с коэффициСнтом k, Ρ‚.Π΅. ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A»B»C» Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ ABC ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ со сторонами kA’B’=A»B» ΠΈ kA’C’=A»C». Π’.ΠΊ. ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Π° расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ измСняСтся Π² k Ρ€Π°Π·. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ A’B’C’ ΠΈ A»B»C» ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹. А Ρ‚.ΠΊ. Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ABC ΠΈ A»B»C» Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ A’B’C’, Ρ‚.Π΅. kA’B’=AB, kB’C’=BC ΠΈ kA’C’=AC.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.3 ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

4.ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам

Если стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ сторонам Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. (Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ подобия ΠΏΠΎ Π΄Π²ΡƒΠΌ ΡƒΠ³Π»Π°ΠΌ) ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½Ρ‹ Π΄Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΠΈ A’B’C’.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ подобия ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A’B’C’ Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A»B»C» с коэффициСнтом k, Ρ‚.Π΅. ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½Π΅ΠΌ Π³ΠΎΠΌΠΎΡ‚Π΅Ρ‚ΠΈΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A»B»C», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ ABC ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам kA’B’=A»B», kΠ’’C’=Π’»C» ΠΈ kA’C’=A»C». Π’.ΠΊ. ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия сохраняСт ΡƒΠ³Π»Ρ‹, Π° расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ измСняСтся Π² k Ρ€Π°Π·. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ A’B’C’ ΠΈ A»B»C» ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹. И Ρ‚.ΠΊ. Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ABC ΠΈ A»B»C» Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ A’B’C’.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.4 ПодобиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ сторонам.

5.ПодобиС ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²

Если Π΄Π²Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ Ρ€Π°Π²Π½ΠΎΠΌΡƒ острому ΡƒΠ³Π»Ρƒ, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ высоту CD. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ABC ΠΈ ADC ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Ρ‚.ΠΊ. ΡƒΠ³ΠΎΠ» А Ρƒ Π½ΠΈΡ… ΠΎΠ±Ρ‰ΠΈΠΉ. Π’Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ADC ΠΈ BDC. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’.Π΅. ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ срСднСй гСомСтричСской Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ этого ΠΊΠ°Ρ‚Π΅Ρ‚Π° Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρƒ. А высота Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ Ρ€Π°Π²Π½Π° срСднСй гСомСтричСской ΠΌΠ΅ΠΆΠ΄Ρƒ проСкциями ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠ² Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρƒ.

ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π² любом Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ биссСктриса Π΄Π΅Π»ΠΈΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ сторону Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π²ΡƒΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠΌ сторонам. (Бвойство биссСктрисы Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.5 ПодобиС ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’.Π΅. ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ AD ΠΈ DC ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ сторонам AB ΠΈ BC.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Рис.6 ПодобиС ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ гомотСтия Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ подобия 9 класс ΠΊΡ€Π°Ρ‚ΠΊΠΎ