Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

ВрапСция. Бвойства Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ

ВрапСция – Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Π° ΠΏΠ°Ρ€Π° сторон ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° (Π° другая ΠΏΠ°Ρ€Π° сторон Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Бвойства Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ

1. БрСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° основаниям ΠΈ Ρ€Π°Π²Π½Π° ΠΈΡ… полусуммС.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

2. БиссСктриса любого ΡƒΠ³Π»Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ отсСкаСт Π½Π° Π΅Ρ‘ основании (ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ) ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, Ρ€Π°Π²Π½Ρ‹ΠΉ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ сторонС.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

3. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ основаниями Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ подобия – Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ этих Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Π΅ΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

4. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ сторонами Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡƒΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

5. Π’ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, Ссли сумма оснований Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° суммС Π΅Ρ‘ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

6. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, Ρ€Π°Π²Π΅Π½ полуразности оснований ΠΈ Π»Π΅ΠΆΠΈΡ‚ Π½Π° срСднСй Π»ΠΈΠ½ΠΈΠΈ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

7. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΉ Π΅Ρ‘ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ сСрСдины оснований Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

8. Если сумма ΡƒΠ³Π»ΠΎΠ² ΠΏΡ€ΠΈ любом основании Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° 90Β°, Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины оснований, Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Бвойства ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ

1. Π’ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ любом основании Ρ€Π°Π²Π½Ρ‹.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

2. Π’ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄Π»ΠΈΠ½Ρ‹ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Ρ‹.

3. Если Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ трапСция – равнобСдрСнная.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

4. Около Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ.

5. Если Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны, Ρ‚ΠΎ высота Ρ€Π°Π²Π½Π° полусуммС оснований.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Вписанная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ

Если Π² Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ вписана ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с радиусом Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ΠΈ ΠΎΠ½Π° Π΄Π΅Π»ΠΈΡ‚ Π±ΠΎΠΊΠΎΠ²ΡƒΡŽ сторону Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ касания Π½Π° Π΄Π²Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° β€” Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅, Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ΠΈΠ»ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅Π³Π΄Π΅ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– срСдняя линия

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ Ρ…ΠΎΡ€ΠΎΡˆΡƒΡŽ ΠΏΠΎΠ΄Π±ΠΎΡ€ΠΊΡƒ Π·Π°Π΄Π°Ρ‡ с Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠ΅ΠΉ (входят Π² Π“Π˜Π ΠΈ Ρ‡Π°ΡΡ‚ΡŒ Π’ Π•Π“Π­) здСсь ΠΈ здСсь.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ ΠΏΠΎΡ‚Π΅Ρ€ΡΡ‚ΡŒ страничку, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Π΅Π΅ Ρƒ сСбя:

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅, ΠΏΠΎΠΆ-Ρ‚Π°, Ρ€Π΅ΡˆΠΈΡ‚ΡŒ:
Π’ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ABCD Ρ‚.E – сСрСдина большСго основания AD. ED=BC, ΡƒΠ³ΠΎΠ» B=120. Найти ΡƒΠ³Π»Ρ‹ AEC ΠΈ BCE.

Π’Π‘EA – ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ, поэтому ΡƒΠ³ΠΎΠ» AEC Ρ€Π°Π²Π΅Π½ 120Β°, ΡƒΠ³ΠΎΠ» BCE Ρ€Π°Π²Π΅Π½ 60˚.

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ поТалуйста Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ.Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ прямая, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСчСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΉ Π΅Ρ‘ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон, Π΄Π΅Π»ΠΈΡ‚ основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.

1) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ сначала, Ρ‡Ρ‚ΠΎ прямая, проходящая Ρ‡Π΅Ρ€Π΅Π· сСрСдины оснований Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ. К этому нСслоТно ΠΏΡ€ΠΈΠΉΡ‚ΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².
2) ПослС Ρ‡Π΅Π³ΠΎ Π΄ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ прямая, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ сСрСдину ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· оснований Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· сСрСдину Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.
3) Π’ΠΎΠ³Π΄Π° ΠΌΡ‹ ΠΏΡ€ΠΈΠ΄Π΅ΠΌ ΠΊ Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ прямая, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСчСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΉ Π΅Ρ‘ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон, Π΄Π΅Π»ΠΈΡ‚ основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅.
Π² ΠΏΠΎΠ»ΡƒΠΊΡ€ΡƒΠ³ радиуса R вписана трапСция наибольшСго ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° основаниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ совпадаСт с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ. Π½Π°ΠΉΡ‚ΠΈ стороны Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ стороны (трапСция равнобокая, коль вписана Π² ΠΏΠΎΠ»ΡƒΠΊΡ€ΡƒΠ³).
ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– мСньшСС основаниС.
Высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ – Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноСс ΠΎΠ΄Π½ΠΎΠΉ стороны, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноСс Π΄Ρ€ΡƒΠ³ΠΎΠΉ.
Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅.
ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ – Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅.
Π˜ΡΡΠ»Π΅Π΄ΡƒΠΉΡ‚Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅Π½Π° наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π½Π°ΠΉΡ‚ΠΈΡ‚Π΅ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅(Π·Π°Ρ‚Π΅ΠΌ ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅), ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ½ΠΎ достигаСтся.

ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ : Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌ сторонам.
НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли основания Π΅Ρ‘ Ρ€Π°Π²Π½Ρ‹ 4 ΠΈ 8.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡƒΠ³Π»Ρ‹ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– прямыС, Ρ‚ΠΎ трапСция Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– вписанная Π² ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π¦Π΅Π½Ρ‚Ρ€ ΠΎΠΊΡ€. – Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅.
Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Из Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
НаконСц, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ поТалуйста :ΠœΠΎΡ‚ΠΎΡ€Π½Π°Ρ Π»ΠΎΠ΄ΠΊΠ° Π²ΠΎ Π²Ρ‚ΠΎΡ€Π½ΠΈΠΊ Π² 17:00 Π²Ρ‹ΡˆΠ»Π° ΠΈΠ· ΠΏΡƒΠ½ΠΊΡ‚Π° А Π² ΠΏΡƒΠ½ΠΊΡ‚ Π’, располоТСнный
Π² 198 ΠΊΠΌ ΠΎΡ‚ ΠΏΡƒΠ½ΠΊΡ‚Π° А. ΠŸΡ€ΠΎΠ±Ρ‹Π² Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π’ 3 часа 12 ΠΌΠΈΠ½, Π»ΠΎΠ΄ΠΊΠ° ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΠ»Π°ΡΡŒ Π½Π°Π·Π°Π΄ ΠΈ
Π²Π΅Ρ€Π½ΡƒΠ»Π°ΡΡŒ Π² ΠΏΡƒΠ½ΠΊΡ‚ А Π² Ρ‡Π΅Ρ‚Π²Π΅Ρ€Π³ Π² 12:12. НайдитС ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π»ΠΎΠ΄ΠΊΠΈ, Ссли
извСстно, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ тСчСния Ρ€Π΅ΠΊΠΈ 1 ΠΊΠΌ/Ρ‡.

ВрСмя Π² ΠΏΡƒΡ‚ΠΈ – 19 часов.
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– собств. ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π»ΠΎΠ΄ΠΊΠΈ.
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Если ΠΌΠΎΠΎΠΎΠΆΠ½ΠΎ Ρ‚ΠΎ с рисунком. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ БН – биссСктриса Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π’ΠΎΡ‡ΠΊΠΈ F ΠΈ D – основания
пСрпСндикуляров, ΠΎΠΏΡƒΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ Н Π½Π° стороны АБ ΠΈ Π’Π‘ соотвСтствСнно; АБ =
3
4
Π’Π‘, АБВ = 60градусов, HD = 14 ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 3
. НайдитС стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Алиса, Π²Ρ‹ ΡƒΠΆΠ΅ успСли Π·Π° Π΄Π²Π° дня ΠΏΠΎΠ±Ρ‹Ρ‚ΡŒ Π‘Π²Π΅Ρ‚ΠΎΠΉ, Василиной, ΠΌΠΎΠΆΠ΅Ρ‚ Π΅Ρ‰Π΅ Ρ‡Ρ‚ΠΎ я упустила…
Π£ΠΌΠ½Π΅Π΅ Π½Π΅ станСтС, Ссли Π·Π° вас Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π±ΡƒΠ΄ΡƒΡ‚))) Π‘Π°ΠΌΠ°-сама…

ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅, поТалуйста. Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π΅ Ρ‚ΠΎΡ‡ΠΊΠ° Π•-сСрСдина сс1. Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ АЕ ΠΈ Вс1. Ссли Π°Π²=3, Π°Π΄=2 сс1=4. ΠΏΠΎ-ΠΌΠΎΠ΅ΠΌΡƒ Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ пСрпСндикуляр, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ ΠΌΠΎΠ³Ρƒ это ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ

Π—Π΄Π΅ΡΡŒ Ρ‚Π°ΠΊ всС Π»Π΅Π³ΠΊΠΎ получится Ρ‡Π΅Ρ€Π΅Π· Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π‘Π°ΠΌ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ ΠΆΠ΅ Π΄Π°Π½! Π‘ΠΎΠ²Π΅Ρ‚ΡƒΡŽ ΠΏΠΎΠΏΡ€ΠΎΠ±ΠΎΠ²Π°Ρ‚ΡŒ.

Π° Ρ‚Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ΄Π½Ρƒ ΠΈΠ· прямых?

Π”Π°, ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ пСрСносим ΠΏΠ°Ρ€Π»Π»Π΅Π»ΡŒΠ½ΠΎ самой сСбС Π΄ΠΎ пСрСсСчСния со Π²Ρ‚ΠΎΡ€ΠΎΠΉ.

НайдитС Π΄Π»ΠΈΠ½Ρƒ большСго основания ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли Π΅Π΅ мСньшая боковая сторона Ρ€Π°Π²Π½Π° 6 см, мСньшая диагональ, пСрпСндикулярная большСй Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ сторонС Ρ€Π°Π²Π½Π° 10 см.
Π—Π°Ρ€Π°Π½Π΅Π΅ спасибо!

ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ обратноС– данная трапСция. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, ΠΏΠΎ Ρ‚. ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅Π˜Π· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
Π’ΠΎΠ³Π΄Π° ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ΠΏΠΎ Ρ‚. ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅
ΠžΡ‚ΡΡŽΠ΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅.

Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ABCD ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ основаниях (AD,BC) соотвСтствСнно Ρ€Π°Π²Π½Ρ‹ (ΡƒΠ³ΠΎΠ» A Ρ€Π°Π²Π΅Π½ D; ΡƒΠ³ΠΎΠ» C Ρ€Π°Π²Π΅Π½ B)

А Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ основания ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ρ‚ΠΎ ΡƒΠ³Π»Ρ‹ A ΠΈ B (Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ C, D) Π² суммС Π΄Π°ΡŽΡ‚ 180 градусов ΠΊΠ°ΠΊ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ односторонниС ΡƒΠ³Π»Ρ‹.
Π˜Ρ‚Π°ΠΊ, A+B=180 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ A+C=180 (ΡƒΠ³ΠΎΠ» C Ρ€Π°Π²Π΅Π½ B). Аналогично со Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ°Ρ€ΠΎΠΉ.
ΠžΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ Π²Π΅Ρ€Π½ΠΎ.

УваТаСмая Max! БпаситС ΠΌΠΎΠΉ Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΠΉ Π°Π²Ρ‚ΠΎΡ€ΠΈΡ‚Π΅Ρ‚. Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ стороны АВ ΠΈ CD Ρ€Π°Π²Π½Ρ‹ 12 ΠΈ 13, Π° основаниС Π’Π‘ 4. БиссСктриса ΡƒΠ³Π»Π° ADC ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· сСрСдину АВ. Найти S Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ

ΠŸΡƒΡΡ‚ΡŒ биссСктриса ΡƒΠ³Π»Π° D пСрСсСкаСт BC Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ DCK Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ BK=9. Π’ΠΎΠ³Π΄Π° ΠΈ AD=9.
ВрапСция – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ, h=12. ВсС Π΅ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒβ€¦

ΠŸΠΎΠΆΠ°Π»ΡƒΠΉΡΡ‚Π°, ΠΏΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ:
ΠŸΡ€ΠΈ ΠΊΠ°ΠΊΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ высоты ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ трапСция с острым ΡƒΠ³Π»ΠΎΠΌ 45 градусов ΠΈ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ P=4(1+ ΠšΠΎΡ€Π΅Π½ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΈΠ· 2) ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΡƒΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ? Π—Π°Ρ€Π°Π½Π΅Π΅ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΡŽ)

МалоС основаниС Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ мСньшС большСго Π½Π° Π΄Π»ΠΈΠ½Ρƒ высоты (ΠΏΠΎΠ΄ΡƒΠΌΠ°ΠΉΡ‚Π΅, почСму…)
ΠŸΡƒΡΡ‚ΡŒ высота – h, мСньшСС основаниС – x.
4(1+ ΠšΠΎΡ€Π΅Π½ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΈΠ· 2) =2h+2x+h√2, ΠΎΡ‚ΠΊΡƒΠ΄Π° 4+4√2-h(2+√2)=2x
S=h(2x+h):2=h(4+4√2-h(2+√2)+h):2.
Π˜ΡΡΠ»Π΅Π΄ΡƒΠΉΡ‚Π΅ S(h)=h(4+4√2-h(1+√2)):2 Π½Π° наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Ρ‚ΠΎΡ‡Π½Π΅Π΅ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ h, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ½ΠΎ достигаСтся.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Напомним свойства Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡. НСкоторыС ΠΈΠ· этих свойств Π±Ρ‹Π»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π² заданиях для 9-Π³ΠΎ класса, Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ. ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ рисунки Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‚ Ρ…ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

$$ 4.<2>^<β—‹>$$. Π’ любой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сСрСдины оснований, Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон, Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (Π½Π° рис. 21 Ρ‚ΠΎΡ‡ΠΊΠΈ `M`, `N`, `O` ΠΈ `K`).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

$$ 4.<3>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ основании Ρ€Π°Π²Π½Ρ‹ (рис. 22).

$$ 4.<4>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ прямая, проходящая Ρ‡Π΅Ρ€Π΅Π· сСрСдины оснований, пСрпСндикулярна основаниям ΠΈ являСтся осью симмСтрии Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ (рис. 23).

$$ 4.<5>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ (рис. 24).

$$ 4.<6>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ высота, опущСнная Π½Π° большСС основаниС ΠΈΠ· ΠΊΠΎΠ½Ρ†Π° мСньшСго основания, Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°Π²Π΅Π½ полуразности оснований, Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ – ΠΈΡ… полусуммС

(рис. 25, основания Ρ€Π°Π²Π½Ρ‹ `a` ΠΈ `b`, `a>b`).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

$$ 4.<7>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сСрСдины Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (рис. 26).

$$ 4.<8>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ полуразности оснований (рис. 27).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сумма ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Π° суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ произвСдСния оснований, Ρ‚. Π΅. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ с основаниями `a` ΠΈ `b` ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ с ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ Π½Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторонах, проходящий Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ основаниям, Ρ€Π°Π²Π΅Π½ `(2ab)/(a+b)` (Π½Π° рис. 28 ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ `MN`).

$$ 4.<11>^<β—‹>$$. Π’Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° равнобокая.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ косинусов (см. рис. 29Π° ΠΈ Π±):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (Ρ‚. ΠΊ. `cos(180^@-varphi)=-cos varphi`).

ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ `CK«|\|«BA` (рис. 29Π²), рассматриваСм Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ послСднСС равСнство, замСняСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π² скобках Π² (2), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ `d_1=d_2`, `c_1=c_2=c`, поэтому ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины оснований Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ€Π°Π²Π΅Π½ `5`, ΠΎΠ΄Π½Π° ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Π° `6`. Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли Π΅Ρ‘ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ `ul(BDK)` с Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ `BK=BC+AD=2MN=10` ΠΈ ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠΌ `DK=6` ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `BDK` Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ‚. ΠΊ. Ссли `DP_|_BK`, Ρ‚ΠΎ

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡΡΡŒ, Ρ€Π°Π·Π±ΠΈΠ²Π°ΡŽΡ‚ Π΅Ρ‘ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с ΠΎΠ±Ρ‰Π΅ΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ. Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΊ основаниям, Ρ€Π°Π²Π½Ρ‹ `S_1` ΠΈ `S_2`.

Π”Π°Π»Π΅Π΅, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ `BOC` ΠΈ `DOA` ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² относятся ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сторон, Π·Π½Π°Ρ‡ΠΈΡ‚, `(S_1)/(S_2)=(a/b)^2`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.ΠžΡ‚ΡΡŽΠ΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ `S_0=sqrt(S_1S_2)`, ΠΈ поэтому ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Основания Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹ `8` ΠΈ `10`, высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° `3` (рис. 32).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ΠΎΠΊΠΎΠ»ΠΎ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅

Найти радиус окруТности, описанной ΠΎΠΊΠΎΠ»ΠΎ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Из ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `ABK` Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ `AB=sqrt(1+9)=sqrt(10)` ΠΈ `sinA=(BK)/(AB)=3/(sqrt10)`. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, описанная ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ `ABCD`, описана ΠΈ ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `ABD`, Π·Π½Π°Ρ‡ΠΈΡ‚ (Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (1), Β§ 1), `R=(BD)/(2sinA)`. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ `BD` Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΈΠ· ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (ΠΈΠ»ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ `d^2=c^2+ab`), Ρ‚ΠΎΠ³Π΄Π°

$$ 4.<12>^<β—‹>$$. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π΄Π²Π΅ стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π½Ρ‹ диагоналям Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡ Ρ€Π°Π²Π½Π° суммС оснований.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *