ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ· ΡΡΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² Π±ΡΠ»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ Π² Π·Π°Π΄Π°Π½ΠΈΡΡ Π΄Π»Ρ 9-Π³ΠΎ ΠΊΠ»Π°ΡΡΠ°, Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. ΠΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠ΅ ΡΠΈΡΡΠ½ΠΊΠΈ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡΡ Ρ ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π°.
$$ 4.<2>^<β>$$. Π Π»ΡΠ±ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½, Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ (Π½Π° ΡΠΈΡ. 21 ΡΠΎΡΠΊΠΈ `M`, `N`, `O` ΠΈ `K`).
$$ 4.<3>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ³Π»Ρ ΠΏΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π²Π½Ρ (ΡΠΈΡ. 22).
$$ 4.<4>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΏΡΡΠΌΠ°Ρ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ (ΡΠΈΡ. 23).
$$ 4.<5>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠ°Π²Π½Ρ (ΡΠΈΡ. 24).
$$ 4.<6>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π²ΡΡΠΎΡΠ°, ΠΎΠΏΡΡΠ΅Π½Π½Π°Ρ Π½Π° Π±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ· ΠΊΠΎΠ½ΡΠ° ΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ, Π΄Π΅Π»ΠΈΡ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΡΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, Π° Π΄ΡΡΠ³ΠΎΠΉ β ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΠ΅
(ΡΠΈΡ. 25, ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π²Π½Ρ `a` ΠΈ `b`, `a>b`).
$$ 4.<7>^<β>$$. ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ (ΡΠΈΡ. 26).
$$ 4.<8>^<β>$$. ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅Π½ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΈ ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΡΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ (ΡΠΈΡ. 27).
ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΈ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, Ρ. Π΅. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.
$$ 4.<10>^<β>$$. ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ `a` ΠΈ `b` ΠΎΡΡΠ΅Π·ΠΎΠΊ Ρ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π½Π° Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½Π°Ρ , ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ, ΡΠ°Π²Π΅Π½ `(2ab)/(a+b)` (Π½Π° ΡΠΈΡ. 28 ΠΎΡΡΠ΅Π·ΠΎΠΊ `MN`).
$$ 4.<11>^<β>$$. Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°ΡΡ Π² ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠ°Ρ.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² (ΡΠΌ. ΡΠΈΡ. 29Π° ΠΈ Π±):
`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,
`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (Ρ. ΠΊ. `cos(180^@-varphi)=-cos varphi`).
ΠΡΠΎΠ²ΠΎΠ΄ΠΈΠΌ `CK«|\|«BA` (ΡΠΈΡ. 29Π²), ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π·Π°ΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π² (2), ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
`d_1^2+d_2^2=c_1^2+c_2^2+2ab`. |
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ `d_1=d_2`, `c_1=c_2=c`, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ
ΠΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠ°Π²Π΅Π½ `5`, ΠΎΠ΄Π½Π° ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΠ°Π²Π½Π° `6`. ΠΠ°ΠΉΡΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π΅ΡΠ»ΠΈ Π΅Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ `ul(BDK)` Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·ΠΎΠΉ `BK=BC+AD=2MN=10` ΠΈ ΠΊΠ°ΡΠ΅ΡΠΎΠΌ `DK=6` ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ»ΠΎΡΠ°Π΄Ρ `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. ΠΠΎ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `BDK` ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Ρ. ΠΊ. Π΅ΡΠ»ΠΈ `DP_|_BK`, ΡΠΎ
ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡ, ΡΠ°Π·Π±ΠΈΠ²Π°ΡΡ Π΅Ρ Π½Π° ΡΠ΅ΡΡΡΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Ρ ΠΎΠ±ΡΠ΅ΠΉ Π²Π΅ΡΡΠΈΠ½ΠΎΠΉ. ΠΠ°ΠΉΡΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π΅ΡΠ»ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ², ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΡ ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ, ΡΠ°Π²Π½Ρ `S_1` ΠΈ `S_2`.
ΠΠ°Π»Π΅Π΅, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ `BOC` ΠΈ `DOA` ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ, ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½, Π·Π½Π°ΡΠΈΡ, `(S_1)/(S_2)=(a/b)^2`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.ΠΡΡΡΠ΄Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ `S_0=sqrt(S_1S_2)`, ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π°
ΠΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Ρ `8` ΠΈ `10`, Π²ΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° `3` (ΡΠΈΡ. 32).
ΠΠ°ΠΉΡΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ.
ΠΠ· ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ABK` Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ `AB=sqrt(1+9)=sqrt(10)` ΠΈ `sinA=(BK)/(AB)=3/(sqrt10)`. ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ, ΠΎΠΏΠΈΡΠ°Π½Π½Π°Ρ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ `ABCD`, ΠΎΠΏΠΈΡΠ°Π½Π° ΠΈ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ABD`, Π·Π½Π°ΡΠΈΡ (ΡΠΎΡΠΌΡΠ»Π° (1), Β§ 1), `R=(BD)/(2sinA)`. ΠΡΡΠ΅Π·ΠΎΠΊ `BD` Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΈΠ· ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (ΠΈΠ»ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ `d^2=c^2+ab`), ΡΠΎΠ³Π΄Π°
$$ 4.<12>^<β>$$. ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ°Π²Π½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π° ΡΡΠ΅ΡΡΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ β2566 ΠΠΊΠΎΠ»ΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π ΠΎΠΏΠΈΡΠ°Π½Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΡ ABCD Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ AD ΠΈ ΠΠ‘.
ΠΠΊΠΎΠ»ΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π ΠΎΠΏΠΈΡΠ°Π½Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΡ ABCD Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ AD ΠΈ ΠΠ‘.
Π°) ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ β AOB = β COD = 90Β°.
Π±) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΊ ΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΠ = CD, Π° ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠ΅ΡΡΡΡΡ
ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Ρ Π²Π΅ΡΡΠΈΠ½Π°ΠΌΠΈ Π² ΡΠΎΡΠΊΠ°Ρ
ΠΊΠ°ΡΠ°Π½ΠΈΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠΎ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ \frac<12> <49>ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ABCD.
ΠΡΡΠΎΡΠ½ΠΈΠΊ: Π―ΡΠ΅Π½ΠΊΠΎ ΠΠΠ 2022 (36 Π²Π°Ρ)
ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ Π²ΠΏΠΈΡΠ°Π½Π° Π² ΡΠ³Π»Ρ: β ΠAD, β ADC, β DCB ΠΈ β CBA. Π¦Π΅Π½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΠΏΠΈΡΠ°Π½Π° Π² ΡΠ³ΠΎΠ», ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π½Π° Π±ΠΈΡΡΠ΅ΠΊΡΡΠΈΡΠ΅ ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°, Π·Π½Π°ΡΠΈΡ ΠΠ, DO, Π‘Π, ΠΠ β Π±ΠΈΡΡΠ΅ΠΊΡΡΠΈΡΡ ΠΈ Π΄Π΅Π»ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΡΠ³Π»Ρ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.
β ΠAD + β CBA = 180Β°
β ADC + β DCB = 180Β°
ΠΠ°ΠΊ ΠΎΠ΄Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠ΅ ΡΠ³Π»Ρ, ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ
ΠΏΡΡΠΌΡΡ
AD||ΠΠ‘ (ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ) ΠΈ ΡΠ΅ΠΊΡΡΠΈΡ
AB ΠΈ Π‘D ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
ΠΠ½Π°Ρ ΠΎ Π±ΠΈΡΡΠ΅ΠΊΡΡΠΈΡΠ°Ρ
ΠΏΠΎΠ΄Π΅Π»ΠΈΠΌ Π²ΡΡ Π½Π° 2:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΞΠΠΠ ΠΈ ΞDCO, ΡΡΠΌΠΌΠ° ΡΠ³Π»ΠΎΠ² Π»ΡΠ±ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° 180Β°, ΡΠΎΠ³Π΄Π°:
β AOB = β COD = 90Β°
Π§ΡΠΎ ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ.
Π±) ΠΠ°ΠΉΡΠΈ: \frac
ΠΡΡΠ΅Π·ΠΊΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½ΡΠ΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ, ΡΠ°Π²Π½Ρ:
BM = BK
CM = CN
AK = AL
DL = DN
Π’.ΠΊ. AB = CD, ΡΠΎ:
BK = Π‘N = BM = CM = x
AK = DN = AL = DL = y
ΠΡΠΎΠ²Π΅Π΄ΡΠΌ ΡΠ°Π΄ΠΈΡΡΡ ΠΈΠ· ΡΠΎΡΠΊΠΈ Π ΠΊ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΠ‘ ΠΈ AD, ΡΠΎΠ³Π΄Π° ΠΠβ₯ΠΠ‘, OLβ₯AD, ΡΠΎΡΠΊΠ° ΠβOM, OβOL, Π·Π½Π°ΡΠΈΡ ΠL ΡΡΠΎ ΠΎΠ΄Π½Π° ΠΏΡΡΠΌΠ°Ρ ΠΈ Π²ΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ:
ΠΡΠΎΠ²Π΅Π΄ΡΠΌ Π΅ΡΡ ΠΎΠ΄Π½Ρ Π²ΡΡΠΎΡΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π‘Π:
HD = LD β LH = y β x
ΠΠ· ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΞΠ‘HD ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΠΈΡΠ°Π³ΠΎΡΠ° Π½Π°ΠΉΠ΄ΡΠΌ Π‘Π:
Π‘Π 2 + HD 2 = CD 2
CH 2 + (y β x) 2 = (y + x) 2
CH 2 = (y + x) 2 β (y β x) 2 = y 2 + 2xy + x 2 β y 2 + 2xy β x 2 = 4xy
CH=\sqrt<4xy>=2\sqrt
ΠΡΡΠ°Π·ΠΈΠΌ ΠΏΠ»ΠΎΡΠ°Π΄Ρ SABCD :
Π ΡΠ΅ΡΡΡΡΡ
ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΏΡΠΎΠ²Π΅Π΄ΡΠΌ KMNL Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ KN, ΠΏΡΡΠΌΡΠ΅ ΠΠ‘ ΠΈ KN ΠΎΡΡΠ΅ΠΊΠ°ΡΡ ΡΠ°Π²Π½ΡΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΠ = Π‘N = x, Π·Π½Π°ΡΠΈΡ ΠΎΠ½ΠΈ ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° Π€Π°Π»Π΅ΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ ΠΠ‘||KN, Ρ.ΠΊ. BCβ₯LM, ΡΠΎ KMβ₯ML, Π·Π½Π°ΡΠΈΡ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌΠΈ β MSK = 90Β°.
ΠΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ ML = 2\sqrt
ΠΡΠΎΠ²Π΅Π΄ΡΠΌ BF||CD ΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΠ°Ρ KN Π² ΡΠΎΡΠΊΠ΅ Π. BCDF β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ, Π·Π½Π°ΡΠΈΡ EN = BC = 2x.
ΞΠΠF ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½ ΞΠΠΠ (β Π β ΠΎΠ±ΡΠΈΠΉ, β ΠΠΠ = β ΠΠF β ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠ΅). ΠΠ· ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΠΎΡΠΎΠ½ Π½Π°ΠΉΠ΄ΡΠΌ ΠΠ:
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ KN:
ΠΡΡΠ°Π·ΠΈΠΌ ΠΏΠ»ΠΎΡΠ°Π΄Ρ SKMNL :
S_
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ Ρ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅:
Π’.ΠΊ. Ρ Π½Π°Ρ Ρ Π±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅, Π° Ρ ΠΌΠ΅Π½ΡΡΠ΅Π΅, ΡΠΎ ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ 6.