Докажите что угол смежный с прямым есть прямой угол
Докажите что угол смежный с прямым есть прямой угол?
Докажите что угол смежный с прямым есть прямой угол.
Помогите?
1) какие углы называются смежными?
2) докажите, что сумма смежных углов равна 180 градусам.
3)докажите, что если два угла равны, то межные с ними углы также равны 4) какой угол называется прямым(острым, тупым)?
5) докажите, что угол, смежный с прямым, есть прямой угол 6) какие углы называются вертикальными?
7) докажите, что вертикальные углы равны 8) докажите, что если при пересечении двух прямых один из углов прямой, то остальные три угла тоже прямые 9) какие прямые называются перпендикулярными?
Какой знак используется для обозначения перпендикулярности прямых?
10) докажите, что через любую точку прямой можно провести перпендикулярную ей прямую, и только одну 11) что такое перпендикуляр к прямой?
12) объясните, в чем состоит доказательство от противного.
Докажите что угол смежный с прямым есть прямой угол?
Докажите что угол смежный с прямым есть прямой угол.
Докажите что если три угла четырехугольника прямые то и четвертый его угол тоже прямой?
Докажите что если три угла четырехугольника прямые то и четвертый его угол тоже прямой.
1. Какие углы называется смежными 2?
1. Какие углы называется смежными 2.
Докажите, что сумма смежных углов равна 180.
3. Докажите, что если два угла равны, то смежные с ними углы также равны.
4. Какой угол называется прямым ; острым ; тупым?
5. Докажите, что угол, смежный с прямым, есть прямой угол.
6. Какие углы называются вертикальными?
7. Докажите, что вертикальными?
Докажите, что если три угла четырехугольника прямые, то и четвертый его угол тоже прямой?
Докажите, что если три угла четырехугольника прямые, то и четвертый его угол тоже прямой.
Угол, смежный с прямым углом, прямой?
Угол, смежный с прямым углом, прямой?
Угол, смежный с острым углом, острый?
Если угол равен 60 градусам, то смежный с ним угол равен 120 градусам?
Угол между биссектрисами двух смежных углов прямой?
Биссектрисы вертикальных углов образуют равномернутый угол?
Есои сумма вертикальных углов равна 120 градусам, то каждый из углов равен 60 градусам?
Один из смежных углов прямой?
Один из смежных углов прямой.
Каким (острым, прямым, тупым) является другой угол?
Продолжи аксиому о смежных углах : угол смежный с прямым?
Продолжи аксиому о смежных углах : угол смежный с прямым.
Если данный угол прямой то каким будет смежный с ним угл?
Если данный угол прямой то каким будет смежный с ним угл.
В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°?
В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°.
Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.
Докажите что угол смежный с прямым есть прямой угол?
Докажите что угол смежный с прямым есть прямой угол.
Помогите?
1) какие углы называются смежными?
2) докажите, что сумма смежных углов равна 180 градусам.
3)докажите, что если два угла равны, то межные с ними углы также равны 4) какой угол называется прямым(острым, тупым)?
5) докажите, что угол, смежный с прямым, есть прямой угол 6) какие углы называются вертикальными?
7) докажите, что вертикальные углы равны 8) докажите, что если при пересечении двух прямых один из углов прямой, то остальные три угла тоже прямые 9) какие прямые называются перпендикулярными?
Какой знак используется для обозначения перпендикулярности прямых?
10) докажите, что через любую точку прямой можно провести перпендикулярную ей прямую, и только одну 11) что такое перпендикуляр к прямой?
12) объясните, в чем состоит доказательство от противного.
Докажите что если три угла четырехугольника прямые то и четвертый его угол тоже прямой?
Докажите что если три угла четырехугольника прямые то и четвертый его угол тоже прямой.
Докажите что угол смежный с прямым есть прямой угол?
Докажите что угол смежный с прямым есть прямой угол.
1. Какие углы называется смежными 2?
1. Какие углы называется смежными 2.
Докажите, что сумма смежных углов равна 180.
3. Докажите, что если два угла равны, то смежные с ними углы также равны.
4. Какой угол называется прямым ; острым ; тупым?
5. Докажите, что угол, смежный с прямым, есть прямой угол.
6. Какие углы называются вертикальными?
7. Докажите, что вертикальными?
Докажите, что если три угла четырехугольника прямые, то и четвертый его угол тоже прямой?
Докажите, что если три угла четырехугольника прямые, то и четвертый его угол тоже прямой.
Угол, смежный с прямым углом, прямой?
Угол, смежный с прямым углом, прямой?
Угол, смежный с острым углом, острый?
Если угол равен 60 градусам, то смежный с ним угол равен 120 градусам?
Угол между биссектрисами двух смежных углов прямой?
Биссектрисы вертикальных углов образуют равномернутый угол?
Есои сумма вертикальных углов равна 120 градусам, то каждый из углов равен 60 градусам?
Один из смежных углов прямой?
Один из смежных углов прямой.
Каким (острым, прямым, тупым) является другой угол?
Продолжи аксиому о смежных углах : угол смежный с прямым?
Продолжи аксиому о смежных углах : угол смежный с прямым.
Если данный угол прямой то каким будет смежный с ним угл?
Если данный угол прямой то каким будет смежный с ним угл.
В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°?
В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°.
Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.
Докажите что угол смежный с прямым есть прямой угол
Угол – это геометрическая фигура ( рис.1 ), образованная двумя лучами OA и OB ( стороны угла ), исходящими из одной точки O ( вершина угла ).
СМЕЖНЫЕ УГЛЫ — два угла, сумма которых равна 180°. Каждый из этих углов дополняет другой до развернутого угла.
Смежные углы — (Agles adjacets) такие, которые имеют общую вершину и общую сторону. Преимущественно под этим именем подразумеваются такие углы, которых остальные две стороны лежат по противоположным направлениям одной прямой, проведенной через.
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными полупрямыми.
На рисунке 2 углы a1b и a2b смежные. У них общая сторона b, а стороны a1, a2 — дополнительные полупрямые.
На рисунке 3 изображена прямая AB, точка C расположена между точками A и B. Точка D — точка не лежащая на прямой AB. Получается, что углы BCD и ACD смежные. У них общая сторона CD, а стороны CA и CB дополнительные полупрямые прямой AB, так как точки A, B разделены начальной точкой C.
Теорема о смежных углах
Теорема: сумма смежных углов равна 180°
Доказательство:
Углы a1b и a2b смежные (см. рис. 2) Луч b проходит между сторонами a1, и a2 развернутого угла. Следовательно, сумма углов a1b и a2b равна развернутому углу, то есть 180°. Теорема доказана.
Угол, равный 90° называется прямым. Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом также прямой угол. Угол, меньший 90° называется острым, а угол больше 90° — тупым. Так как сумма смежных углов равна 180°, значит угол, смежный с острым углом — тупой угол. А угол смежный с тупым углом — острый угол.
Смежные углы — два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая). Сумма смежных углов равна 180°.
Определение 1. Углом называется часть плоскости, ограниченная двумя лучами с общим началом.
Определение 2. Если стороны угла являются дополнительными полупрямыми одной прямой, то угол называется развернутым.
Определение 4. Угол, меньший 90 градусов, называется острым углом.
Определение 5. Угол, больший 90 градусов и меньший 180 градусов, называется тупым углом.
пересекающиеся прямые.
Определение 6. Два угла, одна сторона которых общая, а другие стороны лежат на одной прямой, называются смежными.
Определение 7. Углы, стороны которых продолжают друг друга, называются вертикальными углами.
На рисунке 1:
смежные: 1 и 2; 2 и 3; 3 и 4; 4 и 1
вертикальные: 1 и 3; 2 и 4
Теорема 1. Сумма смежных углов равна 180 градусов.
Для доказательства рассмотрим на рис. 4 смежные углы АОВ и ВОС. Их суммой является развернутый угол АОС. Поэтому сумма данных смежных углов равна 180 градусов.
Интересный факт
Связь математики с музыкой
Так же предложу вашему внимаю забавную пародию про спор двух математиков =)
Геометрия вокруг нас
Геометрия в нашей жизни имеет немаловажное значение. Ввиду того, что когда оглядеться вокруг, то не сложно будет заметить, что нас окружают различные геометрические фигуры. Мы с ними сталкиваемся повсюду: на улице, в классе, дома, в парке, в спортивном зале, в школьной столовой, в принципе везде, где бы мы с вами не находились. Но темой сегодняшнего урока являются смежные угли. Поэтому давайте оглянемся вокруг и попытаемся в этом окружении найти углы. Если вы внимательно посмотрите в окно, то можете увидеть, что некоторые ветки дерева образуют смежные углы, а в перегородках на воротах можно заметить множество вертикальных углов. Приведите свои примеры смежных углов, которые вы наблюдаете в окружающей обстановке.
1. Вот на столе на книжной подставке стоит книга. Какой угол она образует?
2. А вот ученик работает за ноутбуком. Какой угол вы видите здесь?
3. Какой угол образует фото рамка на подставке?
4. Как вы думаете, возможно ли, чтобы два смежных угла были равными?
Перед вами изображена геометрическая фигура. Что это за фигура, назовите ее? А теперь назовите все смежные углы, которые вы можете увидеть на этой геометрической фигуре.
Перед вами изображение рисунка и картины. Рассмотрите их внимательно и скажите, какие виды улов вы видите на картине, а какие углы на рисунке.
Решение задач
Математический диктант на повторение ранее выученного материала
1. Может ли сумма 3-х углов, образованных при пересечении 2-х прямых, равняться 100°? 370°?
2. На рисунке найдите все пары смежных углов. А теперь вертикальных углов. Назовите эти углы.
3. Нужно найти угол, когда он втрое больше, чем смежный с ним.
4. Две прямые пересеклись между собой. В результате этого пересечения образовались четыре угла. Определите величину любого из них, при условии что:
а) сумма 2-х углов из четырех 84°;
б) разность 2-х углов из них равна 45°;
в) один угол в 4 раза меньше чем второй;
г) сумма трех из данных углов равна 290°.
Итог урока
1. назовите углы, которые образуются при пересечении 2-х прямых?
2. Назовите все возможные пары углов, находящихся на рисунке, и определите их вид.
1. Найдите отношение градусных мер смежных углов, когда один из них на 54° больше второго.
2. Найдите углы, которые образуются при пересечении 2-х прямых, при условии, что один из углов равняется сумме 2-х других углов, смежных с ним.
3. Необходимо найти смежные углы, когда биссектриса одного из них образует со стороной второго угол, который больше чем второй угол на 60°.
4. Разница 2-х смежных углов равна трети от суммы этих двух углов. Определите величины 2-х смежных углов.
5. Разница и сумма 2-х смежных углов относятся как 1 : 5 соответственно. Найдите смежные углы.
6. Разница двух смежных составляет 25% от их суммы. Как относятся величины 2-х смежных углов? Определите величины 2-х смежных углов.
Содержание:
Определение: Угол — это геометрическая фигура, образованная двумя лучами, выходящими из одной точки, и частью плоскости, которую они ограничивают.
Два угла называются равными, если их можно совместить наложением.
Биссектрисой угла называется луч, который выходит из вершины угла и делит его на два равных угла.
Определение. Развернутым углом называется угол, стороны которого являются дополнительными лучами.
На рисунке 56 луч АК — биссектриса угла ВАС и
На рисунке 57 угол ABC — развернутый, лучи ВА и ВС — дополнительные. Другая (незакрашенная) полуплоскость относительно прямой АС также задает развернутый угол ABC.
Углы измеряются в градусах, минутах, секундах.
Развернутый угол равен 180°; часть развернутого угла называется градусом и обозначается 1°;
часть одного градуса называется минутой и обозначается 1′;
часть минуты называется секундой и обозначается 1″.
Угол, равный 5 градусов 20 минут и 35 секунд, записывается так: 5°20’35».
Вместо «градусная мера угла равна 20°» часто говорят «угол равен 20°», вместо найти «градусную меру угла» говорят «найти угол».
Определения
Определение: Угол — это геометрическая фигура, образованная двумя лучами, выходящими из одной точки, и частью плоскости, которую они ограничивают.
Определение: Угол, равный 90°, называется прямым; угол, меньший 90°, — острым; угол, больший 90°, но меньший 180°, — тупым; угол, равный 360°, называется полным (его стороны совпадают).
На рисунке 58 последовательно изображены: острый угол, равный 60°; прямой угол, равный 90°; тупой угол, равный 120°; угол, равный 270°; и полный угол, равный 360°.
Градусная мера угла является его важной характеристикой. Свойства градусной меры угла: любой угол имеет градусную меру, выраженную некоторым положительным числом; равным углам соответствуют равные градусные меры, а большему углу — большая градусная мера. И наоборот.
Аксиомы
Аксиома измерения углов. Если внутри угла из его вершины провести луч, то он разобьет данный угол на два угла, сумма градусных мер которых равна градусной мере данного угла.
Аксиома откладывания углов. От любого луча в данную полуплоскость можно отложить угол данной градусной меры, и притом только один.
Два луча с общим началом задают на плоскости два угла. В дальнейшем будем рассматривать меньший из этих двух углов (если они неразвернутые). Такой угол меньше 180°.
Пример №1
Внутри угла ВАС, равного 114°, из его вершины проведен луч АЕ. Угол ВАЕ в 2 раза больше угла ЕАС. Найти величину угла ВАЕ.
Решение:
Пусть Тогда
(рис. 61).
По аксиоме измерения углов
Тогда
Замечания. 1. Возможен другой способ записи решения, когда рядом с буквой пишут знак градуса:
Тогда в уравнении знак градуса писать не нужно:
2. В дальнейшем при решении задач не будем ссылаться на аксиому измерения углов.
Пример №2
Внутри угла проведены лучи BD и BF (рис. 62).
Найти величину угла DBF, если:
Решение:
Если сложить углы ABF и CBD, то получим угол ABC плюс угол DBF.
Отсюда
Ответ:
Пример №3
Луч AD делит угол ВАС на два угла BAD и CAD. Доказать, что угол между биссектрисами АК и АЕ углов BAD и CAD равен половине угла ВАС (рис. 63).
Доказательство:
Так как АК иАЕ — биссектрисы, то Тогда
Следовательно, Что и требовалось доказать.
Замечание. В данной задаче мы доказали свойство: «Если внутри угла из его вершины провести луч, то угол между биссектрисами полученных углов равен половине данного угла».
Геометрия 3D
В пространстве при пересечении двух плоскостей образуются двугранные углы. Две полуплоскости с общей границей являются гранями такого двугранного угла, а их граница — его ребром. Измеряется двугранный угол величиной линейного угла, образованного двумя лучами, проведенными в каждой из полуплоскостей из точки на ребре двугранного угла перпендикулярно этому ребру. На рисунке 69 ZABC — линейный угол изображенного двугранного угла.
Геометрия 3D
В пространстве при пересечении двух плоскостей образуются двугранные углы. Две полуплоскости с общей границей являются гранями такого двугранного угла, а их граница — его ребром. Измеряется двугранный угол величиной линейного угла, образованного двумя лучами, проведенными в каждой из полуплоскостей из точки на ребре двугранного угла перпендикулярно этому ребру. На рисунке 69 — линейный угол изображенного двугранного угла.
Смежные углы. Вертикальные углы
Определение. Два угла называются смежными, если у них одна сторона общая, а две другие являются дополнительными лучами.
Если на рисунке 70 лучи OA и ОВ дополнительные, то углы АОС и ВОС — смежные.
Теорема (свойство смежных углов). Сумма смежных углов равна 180°.
Дано: — смежные.
Доказать:
Доказательство:
Из определения смежных углов следует, что лучи OA и ОВ являются дополнительными и поэтому образуют развернутый угол АОВ, равный 180°. Луч ОС проходит между сторонами этого угла, и по аксиоме измерения углов Поэтому
. Теорема доказана.
Следствия.
Замечание. Все теоремы курса геометрии 7—9 классов описывают свойства фигур на плоскости.
Определение. Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами к сторонам другого.
При пересечении двух прямых АС и DB в точке О (рис. 71) получим, что лучи OA и ОС, О В и OD — дополнительные. Поэтому углы AOD и BОС — вертикальные. Углы АОВ и DOC также вертикальные.
Теорема (свойство вертикальных углов). Вертикальные углы равны.
Дано: — вертикальные (рис. 72).
Доказать:
Доказательство:
Углы 1 и 3 смежные, так как лучи OA и OD — дополнительные по определению вертикальных углов. По свойству смежных углов Углы 2 и 3 также смежные,
Так как
Углом между двумя пересекающимися прямыми называется меньший из образованных ими углов. Если при пересечении прямых АВ и CD (рис. 73) то
как вертикальные. Угол между прямыми АВ и CD равен 30°. Говорят, что прямые пересекаются под углом 30°.
При пересечении двух прямых образуются четыре угла (не считая развернутых). Если один из них 90°, то и остальные по 90° (докажите самостоятельно). Говорят, что прямые пересекаются под прямым углом.
Угол между параллельными прямыми считается равным 0°.
Пример №4
Смежные углы относятся как 2:3. а) Найти величину каждого из углов, б) Определить, сколько процентов развернутого угла составляет меньший угол.
Решение:
а) Пусть — данные смежные углы (рис. 74). Согласно условию
(градусную меру одной части принимаем за
). По свойству смежных углов
то есть
б) Меньшим является а 72° от 180° составляют
Пример №5
а) Найти угол между биссектрисами ОК и ОМ смежных углов ВОС и АОС (рис. 75), если б) Доказать, что биссектрисы смежных углов образуют прямой угол.
Решение:
а) Если
б) Так как ОМ и ОК — биссектрисы, то
Найдем градусную меру
По свойству смежных углов
Тогда
. Что и требовалось доказать.
Замечание. Можно было сослаться на ключевую задачу 3* к § 5.
Пример №6
Доказать, что биссектрисы вертикальных углов образуют развернутый угол.
Решение:
а) Пусть ОЕ и ОК — биссектрисы вертикальных углов АОС и BOD (рис. 76). Докажем, что — развернутый. Известно, что биссектриса делит угол пополам. Так как вертикальные углы равны, то равны и их половины. Поэтому
б) так как лучи OA и ОВ дополнительные, и поэтому
— развернутый. Заменив в последнем равенстве
на равный ему
получим
Отсюда следует, что
— развернутый.
Замечание. Из решения задачи следует свойство: если — развернутый и
— вертикальные.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.