Дроссель и трансформатор в чем разница
Дроссель и дроссель-трансформатор ЖД: описание
Дроссель-трансформатор: назначение
Путевые дроссели и дроссель-трансформаторы на ЖД выполняют функции передатчиков тягового тока между РЦ в обход изолирующих стыков на линиях с автоблокировкой, стыкуя 2 системы электрической тяги.
Устанавливаются дроссели ДГ и дроссель-трансформаторы на ЖД с участками на электротяге постоянного или переменного тока с частотой 50 Гц и электроблокировкой на переменном сигнальном токе частотой 25 Гц и 75 Гц в РЦ.
Дроссель-трансформатор ДТ и дроссель ДГ имеет средний вывод, предназначенный для пропуска двойной силы тока. Так дроссель ДГ-150 и путевой дроссель-трансформатор ДТ-1-150 пропускают переменный ток номиналом в 150 А, средний вывод — 300 А. Соответственно дроссель ДГ-300 и дроссель-трансформатор ДТ-1-300 рассчитаны на пропуск тока силой в 300 А, средний вывод — 600 А.
Чем отличается дроссель от трансформатора
Главное отличие трансформатора от дросселя состоит в количестве обмоток и принципе работы.
Так путевой дроссель обладает одной обмоткой, сглаживает пульсацию постоянного тока за счёт запирания переменной составляющей.
Трансформатор имеет несколько обмоток и изменяет величину напряжения. Дроссель-трансформатор жд рассчитан на передачу через каждую секцию обмотки номинального тока в электрической тяге.
Маркировка ДТ
В обозначении ДТ первая цифра означает величину полного сопротивления основной обмотки переменному току частотой 50 Гц, вторая — значение тягового тока, на который рассчитана каждая полуобмотка дроссель-трансформатора.
Если маркировка ДТ начинается с цифры “2”, это свидетельствует о том, что такой дроссель-трансформатор сдвоенный. Например, путевой дроссель-трансформатор 2ДТ-1-300 в одном корпусе содержит два дроссель-трансформатора ДТ-1-300.
Аббревиатура ДТЕ свидетельствует о том, что данный дроссель-трансформатор не нуждается в обслуживании в процессе эксплуатации. Подробнее с ДТЕ можно ознакомиться тут.
Если же марка ДТ содержит литеры “Г” и “М”, это говорит о том, данный дроссель-трансформатор ДТ имеет залитую герметиком (герметизированную) обмотку и не нуждается в заливке маслом.
Коэффициент трансформации и габариты
Коэффициент трансформации (n) — соотношение напряжений в режиме холостого хода напряжения вторичной обмотки к напряжению первичной обмотки, без учёта падения напряжения. Или, иными словами, коэффициент трансформации n — соотношение между количеством витков первичной и вторичной обмоток.
Схема подключения дросселя и его обозначение
Дроссель — это разновидность катушки индуктивности. В электрических схемах элемент используется для снижения влияния токов в определенном диапазоне. Эта деталь применяется при создании аппаратуры, она пассивна, но при этом обеспечивает стабильность работы всей схемы. Электронный дроссель обладает простым механизмом, но подходит для постоянного и переменного тока.
Что такое дроссель?
Деталь используется при составлении электроцепи для предотвращения нагрева и перегрузки. Катушка индуктивности задерживает влияние тока, при этом резкие перепады исключаются из-за закона самоиндукции. Так создается дополнительное напряжение.
Дроссель состоит всего из 4 элементов:
Электронный дроссель похож на железный трансформатор, отличается он обмоткой. Сердечник состоит из стали, а пластины располагаются так, чтобы они не соприкасались друг с другом. Индуктивность достигает 1Гн, катушка ограничивает резкие скачки тока в цепи. Если уровень снижается, то деталь поддерживает его на минимальных показателях, а при сильном повышении дроссель в устройстве ограничивает скачок. Элемент также используется для сглаживания, отделения определенных участков схемы, накапливания энергии и устранения помех.
Разбираясь в том, что такое дроссель, стоит уточнить, что его в основном ставят для сбора энергии и задержки тока в выбранном диапазоне. Некоторые виды люминесцентных ламп неспособны работать без такой детали. Это относится к уличным фонарям и домашним светильникам. Дроссель в контакте с ними выступает ограничителем, который передает электроды на лампу.
Созданные по этому принципу механизмы формируют напряжение, оно нужно для получения разряда. После этого загорается лампа. Процесс протекает настолько быстро, что напряжение создается всего через несколько долей секунды, без детали невозможна стабильная работа и включение предмета.
Функционирование
Электропроводная катушка, ограничивающая ферромагнитный сердечник, работает по принципу самоиндукции. При детальном рассмотрении прибора становится понятно, что он функционирует как электрический трансформатор, но при этом оснащен дополнительной обмоткой. Сердечник специально изолируют, чтобы в электронике не создавались дополнительные помехи.
Катушка обладает высокой индуктивностью, но весь механизм считается низкочастотным. Диапазон колебания тока составляет от 20 до 100 кГц. По этому критерию дроссели делят на низкие, ультразвуковые и сверхвысокие. В последних отсутствует сердечник, вместо него используется обычный резистор или пластиковый каркас.
Устройство
Дроссель-трансформатор имеет вид проводника, который наматывается по спирали. В зависимости от сферы использования его делают одно- или многожильным. Иногда в устройство добавляют диэлектрический каркас или оставляют деталь без него. В некоторых элементах дополнительно используется основание с круглым, квадратным или прямоугольным сечением.
Деталь состоит из множества витков, во время создания используется прогрессивная или универсальная намотка. При использовании первого вида они плавно меняются по всей длине, второго — расстояние между витками остается одинаковым.
Прогрессивная намотка используется в электрике, когда требуется сконструировать высокочастотное устройство. Для достижения результата приходится уменьшать паразитную емкость. Намотку выполняют в один или несколько слоев, из материалов подходит только медь, поскольку она выступает проводником.
Чтобы повысить индуктивность, используют ферромагнитный сердечник. В зависимости от места применения используют разные виды материала, поскольку некоторые из них подходят для подавления сильных помех, а другие берут при фильтрации звука. Когда требуется дросселирование механизмов на сверхвысоких частотах, то используют в основном латунь.
Во время производства производитель учитывает требуемую индуктивность, способности к выдерживанию тока и особенности индукции, поскольку иначе произойдет насыщение. Сначала определяется размер зазора, количество витков и сила тока, а потом высчитывается диаметр проволоки. В мелких машинах или электронных устройствах дроссель делают плоским, тогда проводник располагают в виде круга или зигзага.
Дроссель-трансформаторы выпускают в двух вариациях:
Детали с сердечниками занимают меньше места, поэтому подходят для малогабаритных приборов.
Также элементы классифицируют по назначению:
Помимо этого, есть модели, которые работают на вторичных импульсных источниках. Для этого устройство сначала накапливает энергию в своем поле, а потом переводит ее в нагрузку.
Обозначение дросселя на схеме
Такие детали всегда изображают по единому принципу, поэтому достаточно один раз в нем разобраться, чтобы потом регулярно читать такие схемы. При этом число полуокружностей выбирают почти любым, чаще оно составляет 3 или 4 единицы для удобного сопряжения с остальными элементами. Выводы обмотки направляют в одну или разные стороны, здесь все зависит от конфигурации схемы. Если нужно изобразить отвод, то рисуют рядом друг с другом сочленения полуокружностей, точку между ними не ставят.
Также есть цветная маркировка деталей, которая соответствует показателям индуктивности. Первые несколько меток указывают на показатели индуктивности в мкГн. Третья — множитель, а последняя — имеющийся допуск. Дроссели маркируют, используя 3 или 4 полоски, иногда их меняют на точки. Если на детали есть три метки, то допуск по умолчанию составляет 20%.
Дроссели используются не только в разных видах лампочек, но и во время сбора импульсных блоков питания, в которых выступают фильтром. В электрических цепях его чаще называют реактором, но принцип устройства остается прежним. Деталь также ставят в сварочные аппараты и применяют в промышленных целях.
Дроссель и трансформатор в чем разница
Помогите понять принцип работы импульсных блоков питания.
Вопросы:
1. Чем больше мощность ИИП, тем больше размеры магнитопровода, это очевидно, но можно ли построить слабый ИИП на здоровом магнитопроводе? Смысла в этом нет, но все-таки, есть ограничение сверху: нужно передавать бОльшую мощность, бери магнитопровод побольше, нужно мало мощности, обязательно брать магнитопровод поменьше?
2. Какой общий принцип выбора количества витков? Нашел ответ
Закон Фарадея: говорит что напряжение на обмотке пропорционально количеству витков.
3. Схема китайского зарядного от мобилы. Что делает дополнительная «первичная» обмотка? У меня есть подозрение, что вот для чего: когда магнитопровод трансформатора намагничивается до отказа, падение напряжения на нем снижается на много вольт, в результате чего ток через транзистор VT1 значительно увеличивается и может его спалить. Я думаю, что эта обмотка предназначена для того, чтобы отследить момент насыщения и закрыть транзистор.
4. Какова скважность импульсов, подаваемых на первичную обмотку? Или это непостоянная величина?
Буду очень благодарен, если проясните эти детали. Я не смог найти в интернете нормальной статьи по ИИП для в меру образованных людей: или суперзаумные рецепты, в которых трехэтажные формулы и графики, которых, похоже, даже автор не понимает, или «для дурачков»: намотайте 10 витков, потом еще 30 и еще 12, должно работать.
КРАМ | ||||
Карма: 121 |
| |||
Солнцеворот | |||
Карма: 3 |
| ||
Николай_С | ||||
Карма: 44 |
| |||
Солнцеворот | |||
Карма: 3 |
| ||
КРАМ | ||||
Карма: 121 |
| |||
КРАМ | ||||
Карма: 121 | ||||
Николай_С | ||||
Карма: 44 |
| |||