Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.
Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением.
Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.
Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.
Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.
Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.
Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.
Итак, по назначению электрические дроссели подразделяются на:
Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.
Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.
Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.
Синфазные дроссели — универсальное классическое средство, позволяющее решить задачи подавления электромагнитных помех (ЭМП) и, соответственно, выполнить требования по электромагнитной совместимости (ЭМС). Эти устройства настолько привычны, что воспринимаются как нечто, не создающее проблем. Но всегда ли синфазный дроссель синфазный? Вот в чем вопрос, но на него есть ответ. И дело здесь в правильном выборе не только дросселя, но и его изготовителя и поставщика.
Когда разработчику радиоэлектронной аппаратуры (РЭА) срочно приходится решать проблемы электромагнитной совместимости и подавления синфазных, а попутно и дифференциальных помех, он буквально хватается за синфазный дроссель. И это правильно. Казалось бы, тут все просто и понятно, про синфазные дроссели и их применение написано много, да и выбор их богатый, в конце концов, можно и самому сделать прибор, намотав, например, на ферритовое кольцо две проволочки. Однако проблемы, как и дьявол, всегда кроются в деталях. Вот на них-то мы и посмотрим.
В общем представлении синфазный дроссель — это связанная индуктивность, в нем на одном сердечнике намотаны как минимум две катушки (бывает, и три, и четыре). Кстати, для получения синфазного дросселя очень важна стратегия намотки (рис. 1), и это разработчикам РЭА хорошо известно. Для ясности и простоты остановимся на дросселе с двумя обмотками.
Рис. 1. Идеальный синфазный дроссель для дифференциальных токов (слева), синфазных токов (в середине) и его условное обозначение в схемах
К омпактное электрическое и электронное оборудование в основном генерирует синфазные помехи. Для того чтобы оно соответствовало требованиям безопасности (не выходя за пределы тока утечки), необходимо использовать дроссели с высоким значением асимметричной эффективной индуктивности. Для этой цели оптимальны дроссели с компенсацией тока с топологией с закрытым сердечником. Проблема насыщения сердечника за счет полезного тока в этих конструкциях решается выбором материала сердечника, но самое главное — намоткой двух катушек с равным числом витков на сердечнике. Катушки связаны таким образом, что магнитный поток, индуцированный верхней катушкой, компенсируется нижней катушкой.
Для подобного идеального дросселя магнитный поток в сердечнике обусловлен тем, что токи дифференциального режима iDM (рис. 1, слева) компенсируют друг друга, что приводит к нулевому сопротивлению (точнее, импедансу) дросселя. Но магнитные потоки Φ1 и Φ2, вызванные синфазными токами iCM (рис. 1, в середине), суммируются, что значительно увеличивает полное сопротивление (импеданс). Для получения такого прекрасного со всех точек зрения эффекта важно правильно выполнить обмотки, поэтому в условном обозначении дросселя данного типа (рис. 1, справа) используется две точки, чтобы указать, как должны быть выполнены обмотки.
Подводя итог, отметим, что синфазный дроссель выглядит как простой проводник для дифференциальных сигналов и как индуктивность для синфазных сигналов. Одно из преимуществ этих видов дросселей заключается в том, что они не будут насыщаться токами дифференциального режима. Для этих связанных индуктивностей коэффициент связи k может быть рассчитан по формуле:
здесь M — коэффициент взаимной индуктивности, а L1, L2 — индуктивности для обеих обмоток.
Значения индуктивностей для синфазного и дифференциального режима могут быть получены по формулам:
LDM = 2×(L-M) и LCM = (L+M)/2 (2)
Учитывая, что индуктивности L1 и L2 равны L и для 100%-ной идеальной связи k = 1, взаимная индуктивность M из формулы (1) получается равной индуктивности L (M = L), а индуктивности дросселя для синфазного и дифференциального режимов, как следует из формул (2), соответственно равны LDM = 0 и LCM = L.
Таким образом, подтверждается, что мы не обнаружим наличие импеданса для сигналов дифференциального режима, но будем иметь некоторое, определяемое индуктивность LCM значение импеданса для сигналов синфазного режима.
На практике взаимная компенсация магнитного потока в дифференциальном режиме не идеальна, этот факт разработчикам РЭА хорошо известен и широко используется. В дифференциальном режиме импеданс не равен нулю, он определяется такой характеристикой, как индуктивность рассеяния, и полезен для фильтрации сигналов дифференциального режима. Однако нельзя забывать и том, что в приложениях с высоким током необходимо убедиться в отсутствии эффекта насыщения сердечника дросселя.
Обратимся к наглядному и поучительному примеру. Столкнулись с крайне неприятной ситуацией, когда устройство, проверенное им на прототипе в лаборатории, провалилось на сертификационных испытаниях. Причем все элементы и компоновка были те же, что и в прототипе. Чтобы проанализировать и понять ситуацию, измерили реакцию синфазных дросселей прототипа (условно названного CHKA) и заявленного на сертификацию изделия (условно названного CHKB) с помощью векторного анализатора цепей Bode 100. Упрощенное измерение синфазного дросселя было выполнено, как показано на рис. 2.
Рис. 2. Упрощенное измерение импедансов для синфазного дросселя
Результаты измерения дросселя, который удовлетворительно работал в приложении (CHKA), представлены на рис. 3.
Рис. 3. Характеристики дросселя CHKA
На рис. 3 можно увидеть, насколько велико различие импедансов синфазного режима по сравнению с дифференциальным. На втором дросселе (CHKB), снятом с изделия, на котором провалились испытания в сертификационной лаборатории, смог заметить очень тонкое отличие — на одной из катушек дросселя отсутствовал один виток (рис. 4).
Рис. 4. Дроссели, используемые в качестве примера
У дросселя CHKA было 14 витков для L1 и L2, а у дросселя CHKB — 14 витков для L1 и 13 витков для L2. Это оказалось весьма существенной разницей. Если одна из катушек отличается от другой, то индуктивность для синфазного сигнала будет уменьшена (соответственно, плохая фильтрация синфазной ЭМП), а дифференциальная индуктивность увеличена. Когда речь идет о линиях передачи, это может привести к проблемам с целостностью сигналов (англ. Signal Integrity — наличие достаточных для безошибочной передачи качественных характеристик электрического сигнала), или если речь идет о цепях питания, то в приложениях с большим током сердечник, вероятно, может быть насыщен даже номинальным рабочим током.
Данный тип дросселей наматывается вручную, так что человеческие ошибки и/или некачественные проверки конечного продукта могут создать проблему, которую трудно будет сразу обнаружить и которая способна проявиться совершенно неожиданно.
Из приведенного примера ясно видно, насколько важна идеальная симметрия для двух катушек в дросселе. Даже в случае, когда в одной из катушек отсутствует лишь один виток, импеданс синфазного дросселя для синфазного режима резко уменьшается. Если говорить в целом, то несимметричность может быть вызвана не только пропуском полного витка, как в приведенном примере, но и просто нарушениями геометрии намотки. К сожалению, нередко этого нарушения шага намотки (не забываем, что в формулу для расчета индуктивности входит величина, обратная длине обмотки, так что при равных условиях неплотно намотанная катушка будет иметь меньшую индуктивность) или пропуска части витка при терминации просто не замечают. Вот почему для ответственных применений, особенно это касается высокочастотных приложений, не рекомендуется их самостоятельное, часто полукустарное, изготовление.
Результатом нарушения неидеальности исполнения синфазного дросселя будет низкая эффективность фильтрации синфазных сигналов ЭМП в области высоких частот — для чего, собственно, эти дроссели и используются. Таким же образом индуктивность в дифференциальном режиме увеличивается с типичным эффектом насыщения сердечника или нарушениями целостности сигнала из-за снижения частоты среза фильтра, образованного индуктивностью рассеяния и, в зависимости от включения дросселя, входной или выходной емкостью.
Отсюда следует вывод: будьте осторожны с недорогими и, как правило, не гарантирующими должного качества компонентами. Это касается не только идеальности намотки, но и материалов, из которых они изготовлены, поскольку последние влияют на точность соблюдения индуктивности и ток насыщения.
В качестве выхода из ситуации можно предложить использовать для критических приложений синфазные дроссели от поставщиков, имеющих надежную репутацию на рынке. (В противном случае, как известно, скупой заплатит дважды.) Одним из таких поставщиков является TDK Corporation — японская компания, занимающаяся производством электронных компонентов и носителей информации.Позиции компании по выпуску элементов из ферритовых материалов значительно усилились в 2008 году после приобретения 90% акций еще одной известной компании EPCOS AG (Electronic Parts and Components) — европейского лидера по производству пассивных электронных компонентов. Объединение таких брендов и их технологий позволило вывести на рынок изделия в качестве, надежности и технических характеристиках которых можно не сомневаться, в том числе синфазных дросселей, специально разработанных для подавления ЭМП и решения вопросов ЭМС.
Как уже было сказано, синфазные дроссели помогают решить две важные проблемы по ЭМС. Первая — очистить цепи питания от ЭМП, то есть уменьшить их излучение цепями питания и линиями их подключения, а вторая — защитить цепи или линии передачи сигнала от воздействия ЭМП. Эти проблемы очень различаются, соответственно, для их решения требуются разные типы синфазных дросселей. Компания TDK и ее структурное подразделение EPCOS предлагают универсальные решения для обеих проблем. В портфелях предложений компании имеются синфазные дроссели, как говорится, на любой вкус и цвет — от традиционных двух- и трех- до четырехобмоточных проволочных, рассчитанных на средние и большие токи, а также миниатюрные многослойные и тонкопленочные, предназначенные для сигнальных цепей, и сборки из нескольких дросселей, выполненные в одном корпусе.
Примеры конструктивного исполнения синфазных дросселей компании EPCOS для линий питания
Дроссель для защиты от синфазных помех, генерируемых импульсным источником питания
Синфазный дроссель — важнейший компонент входного фильтра любого импульсного источника питания. Дело в том, что в процессе работы импульсного преобразователя любой топологии, при переключении полевых транзисторов возникают синфазные помехи, которые распространяются в проводниках и по дорожкам печатных плат.
Эти помехи представляют собой вредные импульсные токи высокочастотного диапазона, которые текут одновременно и по плюсовому и по минусовому проводам, причем в одном и том же направлении. Если эти помехи в конце концов попадут в сеть питания переменного тока, то они способны не только понизить качество функционирования приборов включенных в сеть по соседству, но даже вывести их из строя, особенно сигнальные цепи цифровых блоков.
По данной причине, сегодня все бытовые приборы, принципиально могущие стать источниками синфазных помех, оснащены синфазными дросселями. К таким прибором относятся: принтеры, сканеры, мониторы, плееры, периферия ПК, сами ПК и т. д.
В каждом устройстве, где имеется импульсный блок питания, на входе после конденсатора фильтра обязательно установлен двухобмоточный синфазный дроссель на кольцевом или П-образном сердечнике. По бокам от дросселя установлены конденсаторы для подавления дифференциальных помех (дифференциальные помехи — это отдельная тема), а также высоковольтные Y-конденсаторы.
С другой стороны, когда переменный ток из сети подается к потребителю, встречая на своем пути синфазный дроссель, он не испытывает абсолютно никакого сопротивления, ибо омическое сопротивление проводов пренебрежимо мало, а магнитные поля токов в двух проводниках направлены противоположно друг другу и равны по величине между собой.
Катушки абсолютно идентичны и намотаны идеально симметрично. Часто эти обмотки выполнены намоткой в два провода, что минимизирует индуктивность рассеивания между ними. Получается, что индуктивность синфазного дросселя для обычного импульсного тока, который в двух проводах имеет противоположное направление и одну и ту же величину, будет нулевой. Таким образом, синфазный дроссель мешает исключительно синфазным помехам, источником которых является блок питания, а не сеть переменного тока.
А если бы синфазного дросселя не было, то синфазная помеха беспрепятственно проникла бы и в сеть переменного тока, не помешали бы и конденсаторы между проводами на пути ее распространения.
Выпускаемые промышленностью выводные и SMD синфазные дроссели для плат импульсных источников питания отличаются рядом преимуществ. Они довольно компактны, не занимают много места на печатной плате, их активное сопротивление не превышает единиц мОм, а максимально допустимый ток питания через дроссель зависит по сути только от толщины провода и мощности устройства. Номинальный ток варьируется от 1мА до 10 А. Типовые величины индуктивностей — от 10 мкГн до 100 мГн.
Синфазные дроссели компании Sumida для поверхностного монтажа
Для снижения уровня нежелательного ЭМИ и улучшения помехоустойчивости требуется использование эффективных технологий фильтрации шума. Применение синфазных дросселей производства компании Sumida позволяет обеспечить должный уровень электромагнитной совместимости и повысить надежность работы электронных приборов.
Компания Sumida (http://www.sumida.com/) была основана в 1956 году. Производство катушек индуктивности онa освоила в 1965. В настоящее время корпорация Sumida имеет подразделения и производства в различных странах Азии, Европы и Америки (Китай, Таиланд, Тайвань, Вьетнам, Германия, Румыния, Словения, Мексика). Компания производит электронные компоненты и модули, в которых используется индукционная технология (индуктивности, дроссели, трансформаторы, соленоиды, катушки зажигания). Эти компоненты и модули предназначены для применения в различных секторах: автомобильной и бытовой электронике, энергетике, медицинской технике. Для силовой электроники выпускаются синфазные и силовые дроссели и трансформаторы, ЭМИ-фильтры, ВЧ-трансформаторы. Для автомобильного сектора компания производит катушки инжекторов и соленоиды для ABS, антенны для беспроводных систем доступа, индукционные датчики, модули поджига ксенонового автосвета, элементы противоугонных автомобильных систем, модули управления приводом руля, а также гибкие и плоские кабели для автомобильных систем.
Для решения проблем обеспечения электромагнитной совместимости (EMC) компания производит широкую номенклатуру синфазных дросселей. Компактные синфазные дроссели, выпускаемые компанией, предназначены для поверхностного монтажа. Продукция ориентирована на применение в электронной аппаратуре (компьютерах, мобильных устройствах, бытовой электронике). Дроссели отличает высокое качество, эффективность подавления ЭМИ и доступная цена.
Синфазные дроссели являются одним из эффективных компонентов для создания ЭМИ-фильтров. Они широко применяются для фильтрации помех в сигнальных цепях и цепях питания переменного и постоянного тока. Типовое применение синфазных дросселей — фильтрация помех в высокоскоростных цепях и интерфейсах, например в интерфейсах HDMI. Особая область – цепи CAN-интерфейса в автомобильных системах управления.
Классификация электромагнитных помех
Электромагнитные помехи распространяются как по проводам (кондуктивные помехи), так и через окружающее пространство (излучаемые помехи). Кондуктивные помехи можно разделить на две составляющие: синфазные (common-mode) и дифференциальные (differential-mode или normal-mode).
Дифференциальные помехи проходят по линиям электропитания и не связаны с заземлением. Они измеряются между двумя проводами линии. Синфазные помехи измеряются между одним из проводов и землей. Синфазные помехи можно описать как помехи между проводом и землей, дифференциальные — как помехи между двумя проводами, ток в которых течет в противоположных направлениях. С последним типом помех достаточно успешно борется дроссель в паре с конденсатором.
Конструкция и принцип работы синфазного дросселя
Синфазный дроссель состоит из двух катушек, намотанных на общий сердечник. В качестве сердечника используется, как правило, кольцевой магнитопровод с высокой магнитной проницаемостью, например феррит. Когда через катушки протекают дифференциальные токи, магнитные поля, индуцированные этими токами, взаимно уничтожают друг друга. Если пренебречь омическим сопротивлением катушек, то их входной импеданс в этом случае будет равен нулю. Теоретически они не влияют на прохождение дифференциальных сигналов. В случае появления синфазных токов магнитные потоки обоих катушек складываются, и входной импеданс увеличивается, что приводит к подавлению синфазных токов и значительному снижению амплитуды шумового сигнала. На рисунке 1 показана структура и принцип работы синфазного дросселя.
Рис. 1. Структура и принцип работы синфазного дросселя
Синфазные дроссели для дифференциального сигнала работают как простой проводник, а для синфазного тока (шума) – как индуктивность. Таким образом, применение синфазного дросселя обеспечивает большой импеданс для синфазного тока и большую эффективность подавления синфазных шумов по сравнению с обычными индуктивностями. Даже если частоты полезного сигнала и шума пересекаются, использование дифференциального режима позволяет подавлять только шум. Даже при большом уровне дифференциальных сигналов сердечник дросселя не насыщается, а характеристики дросселя не ухудшаются. Синфазные дроссели подходят для подавления шумов там, где искажение формы сигнала может вызвать проблемы, например, в линиях передачи видеосигнала.
Области применения синфазных дросселей
Синфазные дроссели с успехом применяются для подавления синфазных помех как в силовых, так и в сигнальных цепях электронной аппаратуры:
Компактные синфазные дроссели для поверхностного монтажа активно используются для подавления синфазных шумов в высокоскоростных дифференциальных линиях интерфейсов CAN, USB, IEEE1394, LVDS, DVI, HDMI.
Базовые параметры синфазных дросселей
Рис. 2. Электрическая схема синфазного дросселя
Типовая электрическая схема синфазного дросселя показана на рисунке 2.
В синхронном дросселе параметры обеих обмоток абсолютно идентичны, а сами катушки намотаны абсолютно симметрично на сердечнике, чтобы обеспечить идеальность характеристик.
К базовым параметрам синфазных дросселей относятся:
В таблицах параметров приводятся, как правило, два значения импеданса – типовое и минимальное. Для некоторых типов дросселей вместо импеданса приводится номинальное значение индуктивности дросселя. В этом случае для некоторых серий дросселей приводятся значения допустимого отклонения индуктивности от номинального значения. В отдельных случаях указывается прочность изоляции между обмотками, которая выражается в значении тестового напряжения, при котором сохраняется высокое сопротивление и не будет паразитных токовых утечек.
Синфазные дроссели Sumida для цепей постоянного тока
Основными источниками шума в современной электронной аппаратуре является, как правило, импульсный источник питания. Для уменьшения уровня помех (кондуктивных и излучаемых) в цепях питания используются синфазные дроссели. Именно они могут обеспечить высокий уровень эффективности подавления ЭМИ. В номенклатуре компании Sumida представлен ряд серий синфазных дросселей, предназначенных для поверхностного монтажа и фильтрации цепей постоянного тока. При малых габаритах синфазные дроссели Sumida способны работать в цепях постоянного тока до 6 А.
Все рассматриваемые ниже серии дросселей имеют широкий рабочий температурный диапазон до 125°С и могут быть использованы в том числе для автомобильной электроники. В таблице 1 приведены базовые характеристики серий синфазных дросселей, предназначенных для фильтрации помех в цепях постоянного тока. Характерной особенностью дросселей этого типа является высокий допустимый ток и малое сопротивление обмоток на постоянном токе.
Таблица 1. Основные характеристики синфазных дросселей, предназначенных для ЭМИ-фильтрации цепей постоянного тока
Наименование
Размеры, ШxДxВ, мм
Импеданс на 100 МГц, Ом, тип./мин.
DCR при 20°С, мОм
Макс. ток, А
Особенности применения
CPFC43NP100M801
5.3х6.1х3.7
800/400
21
2
Цепи интерфейсов CAN, аудио-, видео
CPFC74BNP-851
7.5×7.5×5.3
850/510
16
3.5
CPFC74BNP-102
7.5×7.5×5.3
1000/600
20
2.5
CPFC94
7.5×7.5×5.3
700
10
5
ЭМИ-фильтр в цепях питания светодиодных автоламп
CPFC11D60-100M08
11.7×12.8×6.5
800
8
6
Цепи питания ЖК-телевизоров и компьютеров
CPFC5D33-300
5.5×6.2×3.5
225
25
2.5
CPFC6D36-100M06
6.2×5.3×3.8
600
20
2.5
CPFC805NP-100M05
7.9×7.8×4.8
500
15
4.5
CSLF4D17NP-212
5.5×5.0×1.9
2100/1050
70 ±40%
0.9
Портативная аппаратура с напряжением питания до 50 В, автомобильные GPS-навигаторы
CSLF4D17NP-122
5.5×5.0×1.9
1200/600
60 ±40%
0.95
CSLF4D17NP-781
5.5×5.0×1.9
780/390
50 ±40%
1
CSLF4D17NP-391
5.5×5.0×1.9
390/190
40 ±40%
1.2
CSLF4D25NP-201
5.0×5.4×2.5
200/100
13 ±40%
3.5
CSLF4D25NP-351
5.0×5.4×2.5
350/175
17 ±40%
3
CSLF4D25NP-701
5.0×5.4×2.5
700/350
22 ±40%
2.5
CSLF4D25NP-112
5.0×5.4×2.5
1100/550
28 ±40%
2
CSLF4D25NP-192
5.0×5.4×2.5
1900/950
40 ±40%
1.5
CSLF4D25NP-202
5.0×5.4×2.5
2000/1000
54 ±40%
1
Ниже на рисунках 3…7 приведены конструкция, внешний вид и частотные характеристики отдельных серий синфазных дросселей.
Рис. 3. Внешний вид синфазного дросселя серии CPFC43
Рис. 4. Типовые частотные характеристики для дросселей серии CPFC43
Рис. 5. Внешний вид синфазного дросселя серии CPFC74B
Рис. 6. Типовые частотные характеристики для дросселей серии CPFC74B
Рис. 7. Внешний вид синфазного дросселя серии CSLF4D17
На графиках, изображенных на рисунке 4, указаны две характеристики импеданса по отношению к двум режимам работы дросселя – синфазному (Common Mode) и дифференциальному (Normal Mode). Заметим, что частотные характеристики импеданса для обоих режимов очень сильно отличаются.
Особенностью дросселя CSLF4D17 (рисунок 7) является сверхнизкий профиль – всего 1.9 мм.
Синфазные дроссели Sumida для сигнальных цепей
Рис. 8. Электрическая схема четырехлинейного синфазного дросселя серии CSLF1205
Синфазные дроссели для поверхностного монтажа в основном ориентированы на применение в портативной аппаратуре, в цепях CAN-интерфейсов автомобильных систем, в сигнальных цепях xDSL-модемов, а также в качестве ЭМИ-фильтров в любой электронной аппаратуре. Кроме того, дроссели могут применяться и в качестве ЭМИ-фильтров, и в цепях питания. Например, серия дросселей CPFC85 допускает работу с токами до 5.65 А, хотя основным назначением серии является фильтрация в сигнальных цепях. Компания Sumida выпускает широкую номенклатуру компактных синфазных дросселей для поверхностного монтажа. В последнее время в номенклатуре сигнальных синхронных дросселей появились и многоканальные (двух- и четырехлинейные) синхронные дроссели в одном микрокорпусе. На рисунке 8 приведена электрическая схема четырехлинейного синфазного дросселя серии CSLF1205 производства компании Sumida, предназначенного для фильтрации сигналов, например, в дифференциальных LVDS-интерфейсах.
В рамках данной статьи рассматриваются только серии одноканальных синфазных дросселей для поверхностного монтажа, предназначенных для фильтрации сигнальных цепей в электронной аппаратуре широкого профиля. В таблице 2 приведены базовые параметры синфазных дросселей производства компании Sumida для фильтрации шумов в сигнальных цепях.
Таблица 2. Синфазные smd-дроссели Sumida для сигнальных цепей
Наименование
Размеры, ШxДxВ, мм
Импеданс на 100 МГц, Ом, мин.
DCR при 20°С, мОм,
Макс. ток, А
Особенности применения
Серия CRR32
CRR32NP-02A
3.4х4.7х2.8
800
500
0.4
Цифровая аудио- и видеотехника, камеры, фотокамеры, сигнальные и силовые цепи
CRR32NP-05A
650
300
0.46
CRR32NP-07A
500
200
0.58
CRR32NP-10A
350
200
0.8
Серия CPFC74
CPFC74NC-CB10M4
9.5×5.7×5.08
1000
300
0.5
Для сигнальных цепей CAN-интерфейса; электрическая прочность изоляции между обмотками 200 В (5 с)
CPFC74NC-CB08M6
800
250
0.5
CPFC74NC-PS10H2A15
700
120
1.5
Для фильтрации цепей питания;электрическая прочность изоляции между обмотками 125 В (5 с)
CPFC74NC-PS02H2A20
200
120
2
CPFC74NC-PS03H2A25
300
120
2.5
CPFC74NC-PS01H2A30
100
60
3
Серия CPFC85
CPFC85NP-100M10
9.3×8.2×5.5
1000
20
4
ЭМИ-фильтр для широкого класса аппаратуры
CPFC85NP-100M03
300
20
5.65
Серия CPFCD55/MS
CPFCD55-471
9.3×9.0×6.0
0.2
130
1.6
Телеком, xDSL-модемы
CPFCD55-472
2
1000
0.4
CPFCD55-902
4
1600
0.3
Для синфазных дросселей серии CPFC54 (таблица 3) вместо импеданса в документации производителя приводятся данные по индуктивности и допустимый разброс индуктивности для каждого типа.
Таблица 3. Основные параметры синфазных дросселей серии CPFC54
Наименование
Размеры, ШxДxВ, мм
Индуктивность, мкГ
DCR при 20°С, мОм,
Макс. ток, А
Особенности применения
CPFC54-050C
9.5×5.65×4.9
5 ±30%
100
0.9
Фильтрация сигнальных цепей в телекоммуникационном оборудовании, портативной аппаратуре
CPFC54-110C
11 ±30%
120
0.7
CPFC54-250C
25 ±30%
130
0.7
CPFC54-250S
25 ±30%
130
0.7
CPFC54-510C
51 ±30%
160
0.6
CPFC54-510S
51 ±30%
160
0.6
CPFC54-101C
100 ±30%
230
0.5
CPFC54-471C
470 ±30%
200
0.5
CPFC54-102C
1000 (-30/+50)%
200
0.5
CPFC54-222C
2200 (-30/+50)%
400
0.4
CPFC54-472C
4700 (-30/+50)%
650
0.2
На рисунках 9…16 приведены конструкция, внешний вид и частотные характеристики импеданса для отдельных типов синфазных дросселей.
Рис. 9. Внешний вид синфазного дросселя серии CRR32
Рис. 10. Типовая частотная характеристика импеданса дросселя серии CRR32
Рис. 11. Конструкция дросселя CPFC54
Рис. 12. Типовые частотные характеристики импеданса синфазных дросселей серии CPFC54
Рис. 13. Внешний вид и электрическая схема синфазного дросселя серии CPFC74
Рис. 14. Частотная характеристика импеданса синфазного дросселя серии CPFC74
Рис. 15. Внешний вид и электрическая схема дросселя серии CPFC 85
Рис. 16. Частотные характеристики дросселей серии CPFC85
Как видно из рисунка 10, импеданс дросселя практически линейно увеличивается до частот 500…600 МГц.
Особенность справочных данных: в качестве базового параметра фильтров для серии CPFC54 производитель указывает значение индуктивности, а не импеданса. А вот частотные характеристики приводятся для импеданса (в режиме фильтрации синфазных помех).
Применение синфазных дросселей для подавления помех в цепях питания постоянного тока
Синфазные дроссели могут применяться для подавления шумового ЭМИ в цепях питания постоянного тока. Импульсные источники питания являются мощным источником паразитного ЭМИ как в самих устройствах, так и адаптерах питания. Для уменьшения уровня ЭМИ-помех через кабель синфазные дроссели устанавливаются на выходе сетевого адаптера. У входов разъема подключения внешнего адаптера питания также устанавливается синфазный дроссель.
На шине питания постоянного тока присутствуют как дифференциальные, так и синфазные помехи, поэтому следует принять меры к подавлению и тех, и других.
Для подавления синфазных помех могут быть использованы синфазные дроссели Sumida серии CPFC805.
Применение синфазных дросселей в скоростных интерфейсах
Фильтрация в автомобильных CAN-интерфейсах
Компания Sumida в своей документации специально акцентирует использование определенных серий синфазных дросселей именно в данном секторе – фильтрации помех в сигнальных цепях автомобильных CAN-интерфейсов. На рисунке 17 показана типовая схема применения синфазного дросселя в сигнальных цепях CAN-интерфейса.
Рис. 17. Применение синфазного дросселя для фильтрации помех в сигнальных цепях CAN-интерфейса
Фильтрация в цепях USB-интерфейсов
Основным источником ЭМИ в цепях данного интерфейса является интерфейсный кабель. Установка синфазного фильтра по дифференциальным сигналам данных позволяет с одной стороны уменьшить уровень излучения ЭМИ через кабель со стороны передающего блока USB, а с другой – обеспечить фильтрацию внешних помех. На рисунке 18 показана типовая схема применения синфазного дросселя в сигнальных цепях USB-интерфейса.
Рис. 18. ЭМИ–фильтр в цепях USB-интерфейса
ЭМИ-фильтры в дисплейных интерфейсах
Для подавления шума в HDMI обычно встраиваются фильтры, подавляющие только синфазную составляющую и не оказывающие никакого влияния на дифференциальные сигналы. Синфазные дроссели могут устанавливаться с обеих сторон интерфейсного кабеля на сигнальные цепи и цепи синхронизации LVDS-интерфейса. На рисунке 19 приведена схема использования синхронных дросселей в цепях кабеля LVDS-интерфейса ЖК-дисплея.
Рис. 19. Использование синхронных дросселей в цепях кабеля LVDS-интерфейса ЖК-дисплея
Заключение
Применение синхронных дросселей Sumida обеспечивает снижение уровня помех, повышение помехоустойчивости и надежности функционирования сложных электронных устройств с высоким уровнем интеграции, работающих на высоких рабочих частотах. Широкая номенклатура обеспечивает выбор оптимального решения для различных применений с отличным показателем «цена/качество».