Единичный куб abcda1b1c1d1 помещен в прямоугольную систему координат так что началом
Метод координат в задачах типа С2.
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
ﺂ؟ 
1.
2. 
3. 
4.
– сумма векторов.
5. 
6. 
7. 
8. 
2. Введение системы координат.
Метод координат – это, конечно, очень хорошо, но в настоящих задачах C 2 никаких координат и векторов нет, поэтому их надо вводить.
Самое замечательное свойство заключается в том, что не имеет никакого значения как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.
2.1 Координаты куба.
Система координат вводится очень просто:
Начало координат – в точке A
Если ребро куба не указано, то принимаем его за единичный отрезок;
Теперь у каждой вершины куба есть координаты:
A (0; 0; 0), B (1; 0; 0), C (1; 1; 0), D (0; 1; 0),
2.2 Координаты правильной треугольной призмы
A (1; 0; 0), B 

2.3 Координаты правильной шестиугольной призмы

2.4 Координаты правильной четырехугольной пирамиды
Введем систему координат с началом в точке А
AS = AB = 1 по условию;
Угол AHS = AHB = 90°, поскольку SH — высота, а AH ⊥ HB как диагонали квадрата;
Итак, координаты точки S :
Рассмотрим случай, если боковые ребра пирамиды не равны ребрам основания. В этом случае рассмотрим треугольник AHS :
3. Матрицы и определители второго и третьего порядка.
Определение: Таблица, составленная из четырёх чисел 

Определение: Число ∆ называется определителем или детерминантом матрицы.
∆ =
Определитель третьего порядка можно вычислить так:
4. Метод координат в пространстве
4.1 Угол между прямыми.
Вычисление направляющих векторов для прямых.
В задаче С2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим направляющий вектор для прямой.
3.1 Угол между двумя прямыми – это угол между их направляющими векторами.
По теореме Пифагора
По теореме косинусов для ∆ AKE
cos φ =0,8 φ = arccos 0.8
С помощью векторов и координат легко найти угол между прямыми.
А если требуется найти угол между плоскостями или между прямой и плоскостью, то для этого нам понадобится уравнение плоскости в пространстве.
4.2 Плоскость в пространстве задается уравнением.
Чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Уравнение плоскости выглядит так:
Получим систему из трех уравнений:
Решив систему, получим:
A =- 

Уравнение плоскости MNK имеет вид:
Если плоскость проходит через начало координат, то D =0 (так как D ≠0 не позволит получить верное числовое равенство).
Уравнение плоскости, проходящей, через заданную точку 
Уравнение плоскости можно составить и с помощью определителя третьего порядка :


4.3 Угол между плоскостями равен углу между нормалями к этим плоскостям:
cos φ =
В кубе A B C D A 1 B 1 C 1 D 1 то ч к и E и F с середины ребер соответственно A 1 B 1 и
Итак, первый вектор нормали у нас уже есть:
A 

Составим уравнение плоскости:
Найдем угол между плоскостями:
4.4 Угол между прямой и плоскостью



4.5 Расстояние от точки до плоскости

1) Рассмотрим Δ CDE :
по теореме косинусов:
CE =
2) Рассмотрим ΔС 1 СЕ: он прямоугольный, т.к. С 1 С перпендикулярна плоскости нижнего основания => CC 1 перпендикулярна СЕ.
По теореме Пифагора:
С 1 Е 2 = ( 
ВЕ 2 = ( 
4) Рассмотрим ΔВВ 1 Е: он прямоугольный, т.к. ВВ 1 перпендикулярна ВЕ,
по теореме Пифагора:
В 1 Е 2 = В 1 В 2 + ВЕ 2 = 4 + 1 = 5, ВЕ =
6) Искомое расстояние от точки Е до прямой В 1 С 1 – это длина С 1 Е = 2
С 1 (0;0;1), Е ( 
2) Найдем координаты векторов С 1 В 1 и С 1 Е:
С 1 В 1 (0;1;0), С 1 Е ( 
3) Найдем косинус угла между С 1 В 1 и С 1 Е, используя скалярное произведение векторов С 1 В 1 и С 1 Е:
cosβ = 
4) С 1 Е = 
4.6 Расстояние между скрещивающимися прямыми
в пространстве — это длина их общего перпендикуляра. Общий перпендикуляр скрещивающихся прямых — отрезок с концами на этих прямых, перпендикулярный обеим этим прямым.
Если прямые в пространстве пересекаются, расстояние между ними считается равным 0.
Пусть есть не пересекающиеся в пространстве прямые a и b.
Александров А.Д. и др
Математика: ЕГЭ: Учебно-справочные материалы «Просвещение», 2011.
Геометрия: Учеб. для 7-11 кл. сред. шк., 4-е изд. – М.: Просвещение, 1993.
ЕГЭ 2011. Математика. Задача С2. Геометрия. Стереометрия
. Под ред. А. Л. Семенова и И.В.Ященко. МЦНМО, 2011.
В 1:41 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.
Вопрос вызвавший трудности
Ответ подготовленный экспертами Учись.Ru
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
решение задания по геометрии
НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:
Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.
Презентация на тему: Прямоугольная система координат
Упражнение 1Найдите координаты ортогональных проекций точек A(1,3,4) и B(5,-6,2) на: а) плоскость Oxy; б) плоскость Oyz; в) ось Ox; г) ось Oz.Ответ: а) (1,3,0), (5,-6,0); б) (0,3,4), (0,-6,2); в) (1,0,0), (5,0,0); г) (0,0,4), (0,0,2).
Упражнение 2Что представляет собой геометрическое место точек пространства, для которых: а) первая координата равна нулю; б) вторая координата равна нулю; в) третья координата равна нулю; г) первая и вторая координаты равны нулю; д) первая и третья координаты равны нулю; е) вторая и третья координаты равны нулю; ж) все координаты равны нулю?
Упражнение 3На каком расстоянии находится точка A(1,-2,3) от координатной плоскости: а) Oxy; б) Oxz; в) Oyz?
Упражнение 4На каком расстоянии находится точка A(1,-2,3) от координатной прямой: а) Ox; б) Oy; в) Oz?
Упражнение 5Каким является геометрическое место точек пространства, для которых: а) первая координата равна единице; б) первая и вторая координаты равны единице?Ответ: а) Плоскость, параллельная плоскости Oyz и проходящая через точку (1,0,0); б) прямая, параллельная оси Oz и и проходящая через точку (1,1,0).
Упражнение 6Какому условию удовлетворяют координаты точек пространства, одинаково удаленные от: а) двух координатных плоскостей Oxy, Oyz; б) всех трех координатных плоскостей?
Упражнение 7Дан куб A. D1, ребро которого равно 1. Начало координат находится в точке B. Положительные лучи осей координат соответственно BA, BC и BB1. Назовите координаты всех вершин куба.Ответ: A(1,0,0), B(0,0,0), C(0,1,0), D(1,1,0), A1(1,0,1), B1(0,0,1), C1(0,1,1), D1(1,1,1).
Упражнение 8Куб A. D1 помещен в прямоугольную систему координат так, что началом координат является центр нижнего основания куба, ребра куба параллельны соответствующим осям координат, вершина A имеет координаты (-2,2,0). Найдите координаты всех остальных вершин куба.Ответ: B(-2,-2,0), C(2,-2,0), D(2,2,0), A1(-2,2,4), B1(-2,-2,4), C1(2,-2,4), D1(2,2,4).
Упражнение 9Центром октаэдра является начало координат. Две его вершины имеют координаты (1,0,0) и (0,1,0). Найдите координаты остальных вершин октаэдра.Ответ: (-1,0,0), (0,-1,0), (0,0,1), (0,0,-1).
Упражнение 10Как расположена сфера радиуса 2 с центром в точке с координатами (1,2,3) относительно координатных плоскостей?Ответ: Не имеет общих точек с координатной плоскостью Oxz; касается координатной плоскости Oxz; пересекает координатную плоскость Oyz.
Упражнение 11Точка A имеет координаты (x, y, z). Найдите координаты симметричной точки относительно: а) координатных плоскостей; б) координатных прямых; в) начала координат.
Упражнение 12Найдите координаты середины отрезка: а) AB, если A(1,2,3) и B(-1,0,1); б) CD, если C(3,3,0) и D(3,-1,2).
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Пример 1. В единичном кубе ABCDA1 B1 C1 D1 на диагоналях граней AD1 и D1 B1 взяты точки Е и F так, что Найти длину отрезка EF. Поэтапно-вычислительный метод
(треугольник AB1 D1 является равносторонним). Имеем
Пример 1. В единичном кубе ABCDA1 B1 C1 D1 на диагоналях граней AD1 и D1 B1 взяты точки Е и F так, что Найти длину отрезка EF. Векторный метод А А1 В1 В Е D С D1 С1 F
Решение. Введем прямоугольную систему координат Пример 2. В единичном кубе ABCDA1B1 C1 D1 точки E и K – середины ребер AA1 и CD соответственно, а точка M расположена на диагонали B1 D1 так, что B1 M = 2MD1. Найти расстояние между точками Q и L, где Q – середина отрезка ЕМ, а L – точка отрезка МК такая, что ML = 2LK. Координатный метод А E D C K x z Q M L А1 B1 C1 D1 B y
Для нахождения координат точки М используем формулу координат точки (опорная задача 1), делящей отрезок B1 D1 в отношении 2:1. Имеем Тогда Аналогично получим координаты точки L, делящей отрезок MK в отношении 2:1. Имеем
Координаты точки Q равны полусуммам соответствующих координат точек E и М, поэтому
Используемая литература: Корянов А.Г., Прокофьев А.А. Многогранники: виды задач и методы их решения. МАТЕМАТИКА ЕГЭ 2011 (типовые задания С2) Корянов А. Г., г. Брянск, akoryanov@mail.ru Прокофьев А.А., г. Москва, aaprokof@yandex.ru
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1441820
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Утверждены сроки заключительного этапа ВОШ
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Минпросвещения намерено расширить программу ускоренного обучения рабочим профессиям
Время чтения: 2 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
ВПР для школьников в 2022 году пройдут весной
Время чтения: 1 минута
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.





– сумма векторов.






































































