Enable ibs что это в биосе
Улучшаем Boost процессоров AMD микроархитектуры Zen 2. Community Update #2: Let’s Talk от 1usmus
В этой статье я поделюсь с вами индивидуальным планом электропитания для Windows, который должен оказать существенное влияние на поведение boost процессоров Ryzen 3-го поколения, способность использовать предпочтительные ядра, что даст в итоге более высокие частоты, чем вы имеете сейчас (разумеется, если вы испытываете проблему), а так же улучшит фреймрейт-динамику в играх.
Процессоры AMD 3-го поколения Ryzen являются самыми передовыми настольными процессорами на рынке, которые вы можете купить. Также эти процессоры являются уникальными из-за технологии CPPC2 (Collaborative Power and Performance Control 2), которая является интерфейсом-посредником для управления питанием и частотой между процессором и операционной системой. Цифра 2 означает, что это взаимодействие существенно возросло и составляет 1 мс, а не 15 мс как было раньше. Теперь процессор гораздо быстрее реагирует на ту или иную нагрузку и тем самым более тонко настраивает частоту, чтобы система имела максимальную энергоэффективность.
В прошлом я уже писал другие материалы, связанные с архитектурой Zen 2 и оптимизацией памяти Ryzen. Сегодня я представляю вам «1usmus Ryzen Universal» для процессоров Ryzen 3-го поколения. Это измения взаимодействия планировщика Windows и процессора в зависимости от запросов производительности. Этот план питания должен быть особенно полезен для пользователей чипов серии Ryzen 9, таких как Ryzen 9 3900X, Ryzen 9 3950X и, конечно же, Ryzen Threadripper 3-го поколения на сокете TRX4. Разумеется, это актуально для пользователей всей линейки процессоров, основанных на архитектуре Zen 2.
Предпосылки
В отличие от приложений для бенчмаркинга, которые порождают кучу одинаковых потоков, выполняющих одинаковый код на различных фрагментах данных, современные игры очень разнородны. Каждый поток выполняет свой собственный код, который полностью отличается от других потоков и работает с данными в разном количестве, генерируя нагрузки, которые различаются между потоками. Данные, создаваемые одним потоком, часто используются другим, что приводит к задержкам и может даже передавать свои данные другому ожидающему потоку. Также существует концепция «пула потоков», где каждый рабочий поток выбирает любое задание любого типа, работающее с любыми данными, независимо от того, что готово для запуска. Это означает, что поток данных совершенно хаотичен, что генерирует много трафика между CCX, когда некоторые потоки находятся на одном CCX, а другие — на другом.
Это поведение дополнительно усиливается современными графическими API, такими как DirectX 12 и Vulkan, которые поощряют подачу команд рендеринга многопоточным способом. Возможно, вы заметили, как некоторые игры демонстрируют снижение производительности на Ryzen (по сравнению с Intel), когда используется более новый Vulkan или DX12 API. Windows любит балансировать загрузку ЦП между несколькими ядрами, перемещая потоки из занятых ядер в свободные. Это нормальное, ожидаемое поведение для современного планировщика процессов с поддержкой SMP, но Windows на самом деле довольно глупа.
Windows считает ядро «занятым», даже если его использует только один поток, и перемещает этот же поток в свободное ядро, если оно доступно! Кроме того, планировщик процессов Windows не делает различий между физическим и виртуальным ядрами, а также между CCX с их отдельными кэшами. В сравнительно недавних версиях Windows (по крайней мере, начиная с Windows 7) эта тенденция к миграции сдерживается системой «базовой парковки». Если ядро припарковано, планировщик процессов не переносит в него потоки, что позволяет ему переходить в состояние глубокого простоя для экономии энергии. Кроме того, алгоритм парковки ядра отвечает за поддержание выключения второго виртуального ядра каждого физического ядра с поддержкой HT/SMT, если это не требуется, что максимизирует производительность на поток в сценариях с легкой многопоточностью.
Просто для пояснения: планировщик Windows не поддерживает SMT, только алгоритм парковки ядра осведомлен о SMT. Почему это важно? Потому что в режиме высокой производительности система основной парковки отключена. Каждое отдельное ядро отключено, и поэтому планировщик процессов весело мигрирует потоки через каждое физическое и виртуальное ядро в системе (если все ядра не заняты, например, многопоточной рабочей нагрузкой). Это означает, что даже однопоточная рабочая нагрузка заканчивается перемещением между CCX или даже CCD, и ей приходится перетаскивать все данные, с которыми она работает, за ним, примерно в среднем каждые 5–40 миллисекунд в зависимости от используемого SMU и сборки ОС. В игре умножьте это на количество эффективных потоков, которые игра запускает и в результате вы получите фризы или низкий 1% фреймрейт. Не только это, но и потоки разделяют физическое ядро гораздо чаще. Linux справляется с этим гораздо лучше: он активно предпочитает хранить потоки на одном и том же ядре до тех пор, пока на этом ядре нет конфликтов планирования. Таким образом, однопоточная рабочая нагрузка в Linux обычно будет оставаться на одном и том же ядре в течение нескольких секунд, если не дольше. Это не только позволяет избежать накладных расходов при миграции потока, но также позволяет избежать пропусков кэша и трафика между CCX, который может возникнуть в результате такой миграции. Такое поведение не является специфичным для Ryzen, но было стандартным на всех компьютерах SMP/SMT/CMT, работающих под управлением Linux, в течение нескольких лет.
Неделю назад Microsoft выпустила обновление для Windows 10 (1909), которое дает планировщику ОС возможность определять приоритеты потоков. Я протестировал предварительную сборку этой версии и не заметил значительных улучшений. Довольно часто планировщик использовал более высокий приоритет для фоновых процессов. Я думаю, вы представляете, что происходит, если Windows отдает приоритет такому процессу, а не вашей текущей запущенной игре.
Мой подход к устранению этого недостатка в планировщике Windows заключается в использовании настраиваемого профиля электропитания, который обеспечивает лучшее управление планировщиком по распределению нагрузок между ядрами. Сперва будут вовлечены, по возможности, лучшие ядра, что приведет более высокому и плавному fps. Если лучшие ядра будут заняты — нагрузка распределится по ядрам с меньшим рангом.
P-States и C-States
Существует два механизма управления для снижения энергопотребления процессора.
C-States описывают различные возможности простоя (энергосбережения). Прежде чем подсистему можно отключить, она должна бездействовать. Таким образом, C-States x (или Cx) означает, что одна или несколько подсистем ЦП находятся в режиме ожидания и не функционируют.
С другой стороны, P-States выполняют переключение в определенные (энергосберегающие) состояния. Подсистема фактически работает, но не требует полной производительности, поэтому напряжение и/или частота, на которой она работает, снижается. P-States x (или Px) означает, что подсистема, к которой оно относится (например, ядро ЦП), работает на определенной паре «частота и напряжение».
Поскольку большинство современных процессоров имеют несколько ядер в одном модуле (CCX или CCD), C-States далее делятся на C-States ядра (CC-States) и C-States модуля (PC-States). Причина PC-States состоит в том, что в процессоре есть другие (общие) компоненты, которые также могут быть отключены после того, как все ядра, использующие их, выключены (например, общий кэш). Однако, как пользователь или программист, мы не можем управлять ими, поскольку мы не взаимодействуем напрямую с модулем, а скорее с отдельными ядрами. Тогда мы можем напрямую воздействовать только на СС-States; PC-States косвенно влияют на основе CC-States ядер.
Состояния нумеруются, начиная с нуля, как C0, C1. и P0, P1. Чем выше число, тем больше энергии сохраняется. C0 означает отсутствие энергосбережения при выключении чего-либо, поэтому все включено. P0 означает максимальную производительность, то есть максимальную частоту, напряжение и используемую мощность.
Инструкция по установке кастомного профиля питания
Для корректной работы этого обновленного плана электропитания в UEFI необходимо настроить определенные параметры. Хотя большинство производителей материнских плат используют правильные значения по умолчанию, я все же перечислю здесь все варианты для полноты, и для вас, чтобы проверить в случае использования других значений по умолчанию.
Вы должны установить следующее в вашем UEFI, под «CPU Features» или «AMD_CBS»:
Если вы не можете найти определенные настройки, такие как «AMD Cool’n’Quiet» или «PPC Adjustment», не беспокойтесь, они имеют второстепенное значение. Некоторые производители материнских плат просто скрывают их.
Профиль питания поставляется в ZIP-архиве, который вы можете скачать, перейдя по ссылке выше (обратите внимание, что профиль питания распространяют только известные интернет-ресурсы). Извлеките содержимое этого архива.
Теперь запустите пакетный файл install.bat.
После завершения установки вы должны увидеть новый план питания в настройках под названием «1usmus Ryzen Universal». Ищите его в «дополнительных схемах питания», если вы не видите это сразу. Активируйте его, перезагрузите систему, и все готово. Возможно, вам придется щелкнуть разделитель «Показать дополнительные схемы электропитания», чтобы открыть список дополнительных схем электропитания в системе.
Результаты
Взглянув на тактовую частоту во время этого тестового прогона, мы можем видеть, что процессор работает на более высоких тактовых частотах — в среднем на 200 МГц выше. Большинство ядер, на которых нет нагрузки, спят, а так же задействованы только лучшие ядра.
Тестовый стенд
Технические характеристики тестовой системы:
Clocking Stretching
Еще одним нюансом мониторинга реальной частоты является Adaptive Clocking Stretching. Технология адаптивного тактирования, которая динамически регулирует время цикла (например, уменьшение частоты), чтобы выдерживать падение напряжения без увеличения напряжения.
Как только спад обнаружен и величина определена, схема растяжения тактового сигнала увеличивает тактовый период (то есть, уменьшая частоту) для компенсации. Более конкретных данных я предоставить вам, к сожалению, не могу из-за NDA, но могу привести пример поколения Steamroller. Порог спада составлял 2,5%, а увеличение такта 7% обеспечивало правильный баланс между поддержанием высоких частот и улучшением Vmin. И последним интересным моментом этой технологии является настройка рястежения циклов. Как только спад обнаружен и величина определена, схема растяжения тактового сигнала увеличивает тактовый период (то есть, уменьшая частоту) для компенсации. То есть процессор может «проглотить» просадку напряжения на определенном количестве циклов, прежде чем задействует Stretching.
В связи с этим всем описанным я не решил травмировать психику моей любимой публики результатами, которые будут серьезно отличаться от обзоров и материалов моих коллег. Но безусловно за этим будущее.
Подводя итоги, хочу сказать, что мы имеем дело с невероятно сложными и технологическими процессорами, балансировка которых порой требует дополнительного времени, и я рад, что мое взаимодействие с AMD позволит вам получить дополнительную производительность и улучить ваш игровой комфорт. В ближайшее время я надеюсь, вы получите обновление UEFI, которые решат все проблемы. Так же я подготовил некоторые советы, которые помогут в будущем избежать некоторых проблем.
То есть вы можете потерять до 150 МГц из-за системы охлаждения. Что касается меня, то я в своих экспериментах использую продукцию EKWB.
Ранжирование ядер и хорошие новости от Роберта Халлок
Как упоминалось ранее, Zen 2 — единственный продукт на рынке, который использует функцию ACPI под названием CPPC2.
AMD использует интерфейс CPPC2 для передачи операционной системе характеристик и конфигураций управления частотой и энергопотреблением ОС и концепции «предпочтительных ядер», которые могут достигать более высоких частот, чем их соседи по CCX.
Многих энтузиастов смутило то обстоятельство, что ранги ядер в журнале ОС могут сильно отличаться от того, что отображается в Ryzen Master. То есть возник вопрос, не является ли это причиной недостаточного boost.
В моем случае этот нюанс тоже имел место быть. Чтобы развеять собственные сомнения, я проверил качество каждого ядра. Результат был положительным, заводские метки ядер были довольно точными.
21 ноября Роберт Халлок, занимающий пост главы технического маркетинга, опубликовал статью на Reddit, в которой он объяснил многие технические детали о boost и ранжировании ядер. Давайте познакомимся с этой информацией:
«1. Прошивка (FW) поддерживает относительный рейтинг ядер. Список поддерживается путем считывания характеристик напряжения/частоты, генерируемых ядрами во время окончательного испытания и сборки.
2. И Windows, и Ryzen Master читают этот рейтинг, сгенерированный FW, чтобы определить самое быстрое ядро в системе.
3. Если вы проверяете ранжирование ядер с помощью команды «sysfs» в Linux, некоторые заметили, что наши ядра ранжируются с шагом, равным примерно в 3%. Это не означает, что одно ядро на 3% быстрее другого.
4. Вместо этого вам нужно знать, что CPPC2 (он же «предпочтительное ядро» или «самое быстрое ядро») представляет собой «непрерывную, абстрактную, не зависящую от единицы шкалу производительности» (спецификация ACPI, раздел 8.4.7). Для перевода: рейтинг ничего не значит, кроме утверждения, какие ядра являются самыми быстрыми. Бывает, что произвольное ранжирование ядер с интервалом
3% идеально подходит для передачи ранжирования в ОС, не оставляя места для ошибок округления, когда этот произвольный масштаб интерпретируется для установки целевого показателя производительности ЦП.
5. Теперь мы находимся в передаче обслуживания ОС. Здесь все становится сложнее. Windows выбирает и устанавливает приоритеты для самого быстрого ядра в прошивке с дополнительным критерием, что в том же CCX должно быть второе ядро, которое почти так же быстро. Планировщик вращается между ними, чтобы одно ядро не выполняло всю однопоточную работу все время (вот почему вы иногда будете видеть, как задача «одного потока» перемещается назад и вперед между двумя различными ядрами). Кроме того, я считаю, что в этом сообществе теперь глубоко понимают, что распределение рабочих нагрузок в CCX, когда это возможно, является оптимальным для Zen 2. Windows 10 May 2019 Update также учитывает это. Таким образом, если Windows собирается выбрать и использовать самое быстрое ядро, ей нужен партнер в том же CCX, чтобы обеспечить соответствие всем критериям для оптимальной производительности. Это наиболее эффективная конфигурация для сценариев 1T и легкопоточных.
6. Ryzen Master, используя те же показания прошивки, выбирает единственную наилучшую кривую напряжение/частота во всем процессоре с точки зрения разгона. Когда вы видите золотую звезду, это строго означает, что это одно ядро с лучшим разгонным потенциалом. Как мы объяснили во время запуска второго поколения Ryzen, мы подумали, что это может быть полезно для людей, пытающихся сделать записи частоты на Ryzen. Чтобы быть кристально чистым: это ядро не может быть оптимальным для повышения производительности, оно не имеет отношения к быстрому выбору ядра ОС, и оно может не соответствовать другим техническим критериям, связанным с выбором оптимальных ядер для автоматического планирования.
7. Поэтому: и Windows, и Ryzen Master подходят для своих нужд, используя один и тот же общий набор информации, предписанный прошивкой. Основной выбор работает так, как задумано и спроектировано, но мы определенно видим и понимаем, что это может быть яснее. Мы надеемся, что этот пост начнет прояснять ситуацию, и. »
Также хочу обратить внимание на самый важный момент, который в будущем должен полностью избавить пользователей от ситуации, когда ядра среднего качества используются для однопоточных задач:
«8. В качестве следующего шага: мы обновим Ryzen Master, чтобы пометить самые быстрые ядра таким же образом, как Windows, чтобы не было путаницы. Пара ядер, помеченная Ryzen Master, будет той же парой, которая была выбрана для лучшей автономной работы.»
То есть, подводя итоги, компания AMD решила перестраховаться от дальнейшего развития материалов о недоброкачественном boost. Но тем не менее за кадром осталось несколько нюансов, о которых вы должны знать ибо они были затронуты вскользь с небольшой порцией дезинформации:
1. Роберт в своей заметке указывает об активном использовании «duty cycle» (дежурная езда на велосипеде между двумя ядрами) во время любой однопоточной нагрузке. При этом максимальный boost априори не может быть максимальным, так как в системе не существует двух одинаковых ядер. Например, у моего экземпляра лучшее ядро достигает 4590 МГц, а его собрат по задачам только 4550 МГц (речь про эффективную частоту). То есть средняя частота будет равняться
4570 МГц. Это действительно наблюдается на последних прошивках, но при этом в профиле питания Ryzen Balanced режим «duty cycle» запрещен по умолчанию. Так от куда же он берется?
Несколько глав назад я вам демонстрировал скриншот работы UEFI с прошивкой SMU 46.24/46.34, в данной прошивке процессор работает без «duty cycle», то есть однопоточная задача полностью, 100% своего времени удерживается лучшим ядром. Это безусловно круто, но по мнению AMD это может привести к точечному перегреву кристалла. И это действительно так, температура выше в среднем на 2–3 градуса, но она отнюдь очень и очень далеко до температуры троттлинга. В моем понимание на данный момент баг SMU или Windows (поверьте, найти крайнего в этом случае очень сложно) представлен публике как крутая особенность.
2. Оба метода оценки ядер по-своему верны. При этом ПО с фирменным API, которое в теории должен знать лучшее свои ядра, знает эти ядра хуже. В следующем обновлении Ryzen Master пользователи получат ранги ядер которые находятся в таблицах ACPI от Windows.
Текущее положение вещей
Любой скандал всегда имеет последствия, как для того, кто его устраивает, так и для компаний, которые хотят его замять, или даже пытаются в интервью опровергнуть проблему. В нашем случае случилось следующее.
AMD рассмотрела проблемы, описанные в статье, и после расследования выяснилось, что основной причиной такого странного поведения повышения boost был планировщик Windows. К счастью, Microsoft выпустила обновление KB4524570, которое своевременно включает исправление для планировщика Windows и значительно улучшило поведение и частоты повышения boost.
Вторая часть проблемы связана с уровнем UEFI, в частности с настройками параметров CPPC и C-State, которые по умолчанию должны находиться в режиме «Включен». Комментируя мой Power Plan, глава технического маркетинга AMD для процессоров Роберт Халлок в интервью PC World подтвердил наши открытия о CPPC и C-State, заявив, что эти функции включены по умолчанию, что, к сожалению, не отражает реальность.
За исключением энтузиастов и опытных пользователей, большинство людей не склонны перепроверять свои настройки UEFI, и могут использовать свой процессор не на полную мощность, просто потому что некоторые производители материнских плат, похоже, не знают, насколько важны эти настройки для повышения производительности процессора. В этой статье я публикую второй план питания для Ryzen, который помогает даже пользователям с последними обновлениями Windows.
Далее я приведу хронологию событий, которая не может не удивить.
И собственно что же изменилось после исправления UEFI и KB4524570. Поехали.
UEFI v160, 1903 без KB4524570, Ryzen Balanced
Этот график отображает состояние системы до обновления прошивки материнской платы и кумулятивного обновления Microsoft от 15 ноября. На нем продемонстрирована однопоточная нагрузка на чистой операционной системе без фоновой активности программ, но при этом задействовано 9 из 12 ядер и наблюдаются явные проблемы с работой CPPC. При этом при каждом перезапуске теста имели boost разные ядра.
Каждое ядро, которое не спит — это автоматический минус для boost, так как для n-поточных нагрузок определен свой лимит по EDC, напряжению и температуре (другие факторы работы AVFS мы не будем рассматривать в этом материале). Напомню, что для игр подобное переключение контекста и прогоны данных между ССX означают статтеры (и, в частности, сниженный фреймрейт в 1% событиях), которые, в свою очередь, влияют на ваш игровой комфорт.
UEFI v170, 1903 с KB4524570, 1usmus Ryzen Universal
Изменения очень серьезные:
Mod Bios by me v130 + SMU 46.24.00, 1903, Ryzen Balanced
Следовательно, необходимо использовать новый подход, называемый эффективными частотами. Этот метод основан на возможности аппаратного обеспечения определять фактическое состояние частот (все их уровни) в течение определенного интервала, включая спящие (остановленные) состояния. Затем программное обеспечение запрашивает счетчик в течение определенного периода опроса, который предоставляет среднее значение всех состояний частот, которые произошли в данном интервале. HWiNFO v6.13-3955 Beta представляет отчеты об этих частотах.
Многие пользователи могут быть удивлены, насколько эти частоты отличаются от традиционных значений. Но, пожалуйста, обратите внимание, что это эффективное значение — это средние частоты за интервал опроса, используемый в HWiNFO.
Я очень благодарен Martin, разработчику HWiNFO за этот вклад.
Также хотел бы поблагодарить Oleg Kasumov и @Kromaatikse за помощь в открытиях, описанным в этом материале.
Выводы
Удивительно, как такой простой программный мод может оказать столь заметное влияние на процессор, и мы даже не разгоняем его. Кастомный план управления питанием универсален, он совместим с любой версией Windows 10 и любым UEFI. Малопоточные рабочие нагрузки теперь распределяется на меньшее количество ядер, которые, как известно, лучше на физическом уровне (более удачные ядра, бининг, ядра с высоким рангом) и которые повышают тактовые частоты лучше других, обеспечивая повышенную энергоэффективность и производительность. Не обделены 2-, 3- и 4-поточные вычисления, теперь нагрузка будет распределяться только среди лучших ядер в CCX, которые имеют более высокий ранг, нежели соседи.
Я бы посоветовал всем пользователям поделиться своим опытом использования этого плана электропитания в комментариях к этой статье. Так же я буду рад ответить на все ваши вопросы.
Биос китайских материнок как настроить
FAQ по китайским материнским платам LGA 2011-3
Общие вопросы
Как китайские материнки в целом?
Со времен сокета 2011 качество улучшилось и оставшиеся проблемы, по большей части, связаны не а аппаратной, а с программной частью.
Как и раньше, более известные бренды, такие как Huananzhi, идут вполне на уровне обычных бюджетных брендовых плат. Среди менее известных могут встречаться как удачные, так и не удачные модели.
Нужно ли разбираться в тонкостях анлоков, разгонов, прошивок и прочего или можно просто купить и пользоваться?
Разбираться не нужно, все тонкости нужны для того, чтобы «выжать все соки» из железа. Производительности даже средне-бюджетных процессоров данного сокета будет достаточно для стандартных задач (включая игры) без какого-либо тюнинга.
Чем прошивают биос на данном сокете? Нужен ли программатор?
На данный момент практически все модели плат можно прошить без программатора, однако его наличие не помешает (хотя бы на всякий случай).
Большинство плат от Huananzhi прошиваются без каких-либо проблем прямо из под Windows с помощью FPTW.
Некоторые платы производства Jingsha\Kllisre и других производителей могут иметь защиту от записи (в таком случае FPTW выдает ошибку 280). Снять её можно в биосе, перейдя в IntelRCSetup > PCH Configuration > Security Configuration и изменив значение пункта Bios Lock на Disabled. После сохранения настроек и перезагрузки защита от записи будет снята.
Обойти защиту также можно используя Afudos или Afuwin.
В любом случае, перед прошивкой лучше перейти на страницу платы и внимательно прочитать соответствующий раздел.
Для облегчения прошивки \ снятия дампов для популярных плат можно воспользоваться программой Mi899.
Что значит тот или иной пост-код?
Таблица с объяснением наиболее часто встречаемых пост-кодов находится здесь.
У меня процессор с разблокированным множителем. Как его разогнать? Какие параметры менять в биосе?
Для плат Huananzhi и других, использующих схожий биос, нужные настройки находятся в меню IntelRCSetup > Overclocking Feature > Processor и IntelRCSetup > Overclocking Feature > CLR\Ring.
Core Max OC Ratio — множитель ядер. Для Xeon E5 1650 v3 можно сразу установить 41-42.
Core Voltage Mode — можно выбрать динамически (Adaptive) повышать напряжение или сделать статическим
Core Voltage Override — выставляем напряжение на процессор в милливольтах, к примеру 1250, это будет 1.25 вольта (начать можно как раз с этого значения). Выше 1.30 поднимать с осторожностью!
CLR Max OC Ratio — множитель контроллера памяти. По умолчанию равен 30, можно плавно повышать до 33-35 и тестировать производительность и стабильность.
Core Voltage Mode — напряжение контроллера памяти. Аналогично Core Voltage Mode, но не выше 1250.
Процессоры Haswell очень чувствительны к напряжению контроллера памяти, более-менее оптимальным считается 1.25 вольта, поднимать выше стоит с особой осторожностью.
Для плат от Huananzhi и некоторых других разгон доступен также через приложение Intel Extreme Tuning Utility.
Как сбросить биос?
С помощью специальной перемычки JCMOS или JBAT1 на плате (присутствует не во всех моделях) или просто вынув батарейку и полностью обесточив компьютер на некоторое время.
Если нужно сбросить программно и «вслепую»:
Нужно ли что-то настраивать для корректного сна \ гибернации?
Как правило нет, в большинстве случаев нужные настройки уже выставлены по умолчанию. Необходимые параметры находятся в по адресу Advanced > ACPI Setting. Для корректного сна параметр ACPI Sleep State должен быть выставлен в положение S3 (Suspend to ram). Для гибернации параметр Enable Hibernation должен быть в положении Enabled.
О том, как включить гибернацию в Windows и добавить её в меню Пуск можно прочитать здесь.
Как настроить smartfan (для плат Huananzhi X99-TF\F8\T8\8m и других)
Настройка управления оборотами вентиляторов представляет собой настраиваемую кривую зависимости оборотов от температуры процессора. Настраиваются пять точек этой кривой. Т1 определяет температуру, до достижения которой будут обороты, определённые в PWM1 (значение в %). T5 определяет температуру, после достижения которой будут 100% обороты. T2/T3/T4 являются промежуточными точками, с помощью которых возможно построить кривую между T1 и T5.
На графике представлен вариант из kot-версий биоса. До 45° поддерживаются минимальные обороты (30%) и далее линейно растут до 100% при достижении 80°.
Для лучшего понимания, рассмотрим другой вариант настройки.
Что такое Tbase0? Это настраиваемое смещение выставленных значений температуры. При значении 0 значения температуры совпадают с температурой CPU Package (DTS). В версии биоса 2020-08-17 нет настройки Tbase0, но это смещение имеет значение 15, именно поэтому все значения температур в настройке занижены на 15, чтобы соответствовать желаемому.
Также биос от 2020-08-17 позволяет настраивать % оборотов 4pin-вентилятора, подключённого к разъёму CPU_FAN2 (для плат X99-T8/TF). Обороты статичны и не будут зависеть от температуры. Настройка в пределах значений 0-255.
Этот режим также поддерживается и для CPU_FAN1. Удобно изучить возможности своего вентилятора перед его настройкой.
Проблема, на данный момент не имеющая решения, связана с нарушением работы управления оборотами после выхода системы из режима сна. Обороты CPU_FAN1 фиксируются на значении 50%, а обороты CPU_FAN2 (X99-T8/TF) на значении 100%.
Вся эта информация взята отсюда.
Проблемы при старте
Система после сборки зависает на каком-либо пост-коде либо просто не стартует (черный экран)
Самая частая причина — окислились контакты модулей памяти или процессора. Так как и память и процессор обычно не новые, а б\у, то это случается гораздо чаще, чем можно представить.
Вторая наиболее популярная причина — несовместимая оперативная память. LGA2011-3 работает с дескстопными модулями только с 16 банками (не чипами). Серверной памяти это не касается, она работает вся.
Проверьте характеристики имеющейся памяти, если есть возможность — проверьте модули на другом ПК.
Система не стартует (нет изображения) со старой видеокартой. С более новой — всё нормально
Вероятно видеокарта не поддерживает UEFI. Для того чтобы заработала старая видеокарта нужно в биосе включить CSM и для видеокарты выставить «Legacy».
Система не стартует с модулями памяти от разных производителей. Сами модули 100% рабочие.
Серия процессоров Xeon e5 2600 v3 (вероятно, также относится и к 1600 v3) достаточно капризна по отношению к памяти и может не запускаться, даже если установленные модули имеют схожие характеристики, но произведены разными заводами.
Достоверно узнать, будут ли конкретные модули памяти работать вместе можно только на практике.
Система не стартует с модулями памяти DDR3 объёмом 32 Гб. Посткод b1 (61)
Помочь решить проблему может данное видео.
Двухсокетная система не стартует когда установлен только один процессор
В большинстве китайских двухсокетных плат для старта необходимо запитать оба процессорных разъема, даже если второй процессор не установлен.
При первом включении\перезагрузке видеокарта работает в режиме PCIe 1.1 (Huananzhi X99-TF \ F8)
Решение протестировано на Huananzhi x99-TF с биосом от 01/20/2021 и видеокартой GTX 650 Ti. За информацию спасибо RacoonSan.
Суть проблемы, и, собственно, ее решение.
При первом включении (после подачи питания) видеокарта запускалась в режиме PCIe 1.1. Если сделать перезагрузку (любую — Ctrl+Alt+Del из BIOS, из ОС, с кнопки) — видеокарта работала в PCIe 3.0. Следующая перезагрузка — снова 1.1. В общем, каждая четная загрузка — 3.0, нечетная — 1.1.
Перебрал массу комбинаций параметров PCI-E, и в итоге помогла установка варианта «Disable Phase 0,1,2,3» в параметре «Gen3 Eq Mode» настроек порта, в который вставлена видеокарта. После этого две недели — полет нормальный, видеокарта всегда стартует в режиме PCIe 3.0, с первого (холодного) включения. Карта также стартовала в режиме 3.0 при выставленном параметре «Enable Phase 1 Only», но порт PCIe сыпал аппаратными ошибками в журнал Win10, видеокарта периодически зависала.
Полный путь к параметру «Gen3 Eq Mode»: «IntelRCSetup» — «IIO Configuration» — «IIO0 Configuration» — «Socket 0 PcieD02F0 — Port 2A».
Система стартует и работает нормально, но горит пост-код 73
В настройках электропитания Windows выключите быстрый запуск, после этого будет гореть более привычный код «АА».
Проблемы с анлоком турбо-буста
При выходе из режима сна слетает анлок, помогает только перезагрузка
К сожалению эта проблема характерна для всех существующих на данный момент китайских плат. Как вариант — можно заменить сон на гибернацию, в таком случае анлок слетать не будет.
UPD: решение проблемы — анлок через утилиту S3TurboTool.
Другие проблемы
Где взять драйверы для платы?
Win10 как правило сама находит все необходимые драйвера. Для более старых ОС их можно скачать с сайта Huananzhi (подходят и для большинства плат других производителей) — http://www.huananzhi.com:8080/driversdownload/ или воспользоваться каким-либо драйвер-паком. Например Snappy Driver Installer или Driver Booster.
Нет звука не передней панели
Установите версию Realtek High Definition Audio Drivers 2.81 (не 2.82), после перезагрузки проверьте наличие в трее значка Realtek.
Затем заходим в диспетчер Realtek и нажимаем на папочку “Параметры разъема”. В открывшемся окне устанавливаем чек-бокс на пункте “Отключить определение гнезд передней панели”.
Я использую плату с DDR3 и у меня аномально низкая скорость памяти. Изменение таймингов или частоты проблему не решает.
В некоторых биосах такой параметр может быть скрыт, в таком случае открывать его придется через AmiBCP.
Есть ли возможность разгона памяти DDR4 выше 2400 Мгц на китайских платах?
На данный момент такой возможности нет.
Начал дребезжать вентилятор на vrm, что делать?
USB 3.0 «отваливается» или падает скорость
Попробуйте следующее: в биосе идем в раздел «Advanced», далее в раздел «USB Configuration», в опции «Legacy USB Support» выставляем режим «disabled». Затем в биосе переходим в раздел «IntelRCSetup», далее в раздел «PCH Configuration», далее в раздел «USB Configuration», в опции «xHCI Mode» выставляем режим «smart auto».
Возможен ли разгон через setFSB как на 2011 сокете?
Все существующие на данный момент китайские платы на LGA2011-3 лишены отдельного клокера, поэтому разгон через setFSB невозможен.
Регулярно «пропадает» загрузчик Windows
Чтобы такого не происходило, попробуйте выставить в биосе режим загрузки «UEFI Only» (видеокарта должна поддерживать UEFI,а системный диск быть GPT).
Способы восстановления загрузчика описаны здесь.