——————————————————— И не надо мне писать письма или в личку по вопросам, связанным с ноутбуками, всё равно ж не отвечу;)) Всё это обсуждается на ФОРУМЕ.
reylby, а сколько будет примерно стоить это операция в сц если можно узнать?
——————————————————— И не надо мне писать письма или в личку по вопросам, связанным с ноутбуками, всё равно ж не отвечу;)) Всё это обсуждается на ФОРУМЕ.
——————————————————— И не надо мне писать письма или в личку по вопросам, связанным с ноутбуками, всё равно ж не отвечу;)) Всё это обсуждается на ФОРУМЕ.
——————————————————— И не надо мне писать письма или в личку по вопросам, связанным с ноутбуками, всё равно ж не отвечу;)) Всё это обсуждается на ФОРУМЕ.
Замечание: данное сообщение было перемещено из темы Инструкции для ноутбуков (Service Guide). Переместил: reylby
rhiannon, В сервис-гиде ошибка, контакты называются J1 и J2.
Замечание: данное сообщение было перемещено из темы Инструкции для ноутбуков (Service Guide). Переместил: reylby
——————————————————— И не надо мне писать письма или в личку по вопросам, связанным с ноутбуками, всё равно ж не отвечу;)) Всё это обсуждается на ФОРУМЕ.
Замечание: данное сообщение было перемещено из темы Инструкции для ноутбуков (Service Guide). Переместил: reylby
Здраствуйте уважаемые, хочу рассказать как я восстановил BIOS на Aсer Aspire V5 121
тогда в чем сомнения? установить напрямую версию 2.x с сайта не получится. Можно обновить 1.x на 2.x, если установщик изменить:
DisableSecureCapsuleFlash=0 в оригинальном было 1 DisableCompare=1 в оригинальном было 1 SkipSecureBootProtectionCheck=1
слик это не затронет, он останется от версии 1.x в БИОС
Подскажите возможные пути решения. На запчасти разбирать вроде не хочется. Чувствую, что можно его спасти. Запустился же он вчера.
Gigabyte GA-EP45-DQ6 – самая оверклокерская материнская плата (страница 2)
Системная плата Gigabyte GA-EP45-DS3, обзор которой уже давно опубликован на нашем сайте, была первой изученной нами платой Gigabyte, основанной на наборе логики Intel P45 Express. Возможно, вы удивитесь, но оказалось, что параметры BIOS одной из самых младших моделей в линейке во многом такие же, как и у одной из старших. Разумеется, нельзя сказать, что возможности полностью идентичны. Платы физически отличаются друг от друга, поэтому в BIOS платы Gigabyte GA-EP45-DQ6 появились возможности, которых не было, нет, и в принципе не могло быть у Gigabyte GA-EP45-DS3. Например, опции, относящиеся к многочисленным дополнительным контроллерам. Однако в целом названия и функциональность параметров остались одинаковы. Мало того, близки шаг и интервалы их изменения, а в некоторых случаях младшая плата даже обладает чуть более широкими возможностями, чем старшая.
В целом материнская плата Gigabyte GA-EP45-DS3 оставила неплохое впечатление, однако была высказана претензия, что у неё слишком сложный BIOS для такой простой платы. Пожалуй, следует извиниться перед Gigabyte за неправильное понимание ситуации. BIOS Gigabyte GA-EP45-DS3 не был искусственно «раздут» добавлением «лишних» функций. Просто в Gigabyte не стали урезать его возможности, оставив их для младшей платы почти такими же, как и у более старших моделей. Вряд ли стоило укорять компанию за это.
В обзоре системной платы Gigabyte GA-EP45-DS3 мы тщательно изучили все интересные особенности BIOS Setup, поэтому на этот раз не будем столь доскональны, а лишь в общем ознакомимся с возможностями BIOS платы Gigabyte GA-EP45-DQ6.
реклама
В очередной раз можно порадоваться, что раздел MB Intelligent Tweaker (M.I.T.), где сосредоточены почти все интересующие оверклокеров настройки, стоит на первом месте. Сам раздел очень большой и объединяет огромное количество параметров, однако разработчики уделили немало внимания информативности и удобству работы. Многочисленные параметры разбиты на категории, разнесены по различным подменю, снабжены контекстной справочной информацией, поэтому пользоваться возможностями раздела достаточно просто и удобно.
Параметр Robust Graphics Booster позволяет автоматически разгонять видеокарту, возможные значения: Auto, Fast, Turbo. С помощью параметра CPU Clock Ratio мы задаём нужный коэффициент умножения, а параметр Fine CPU Clock Ratio поможет выставить половинные множители для процессоров, выполненных по технологии 45нм. Итоговую частоту покажет информационный параметр CPU Frequency.
Установив для параметра CPU Host Clock Control значение Enabled, мы получим возможность задать нужную частоту шины FSB с помощью параметра CPU Host Frequency всё в том же чрезмерном интервале от 100 МГц до 1200 МГц. Параметр PCI Express Frequency позволяет менять частоту шины PCI-E в интервале от 90 до 150 МГц с шагом 1 МГц. Параметр C.I.A.2 позволяет автоматически разгонять процессор при появлении нагрузки, возможные значения: Cruise, Sports, Racing, Turbo и Full Thrust.
На отдельную страницу вынесены детальные возможности управления настройками чипсета – Advanced Clock Control.
Группа параметров DRAM Performance Control содержит настройки, относящиеся к работе памяти. Для параметра Performance Enhance по-умолчанию стоит значение Turbo, можно попробовать перевести его в Extreme, но для достижения максимальных частот при разгоне для начала лучше установить Standard. Если в системе используются модули памяти, поддерживающие технологию Extreme Memory Profile (X.M.P.), то есть содержащие в SPD профили с оверклокерскими настройками, то их можно задействовать с помощью соответствующего параметра.
Параметр (G)MCH Frequency Latch задаёт частоту шины: 200, 266, 333 или 400 МГц, от которой будет зависеть набор доступных множителей для памяти. Если установлено значение Auto, то параметр System Memory Multiplier (SPD) выводит сразу все множители.
Буква, стоящая после множителя, означает частоту шины, к которой множитель относится, об их значениях напомнит соответствующая подсказка:
реклама
Итоговую частоту памяти показывает информационный параметр Memory Frequency.
Очень удобно, что демонстрируются текущие значения основных таймингов памяти, но, к сожалению, было замечено, что они далеко не всегда соответствуют реальным показателям. В частности, при разгоне процессора с увеличением частоты FSB плата устанавливала тайминги 5-7-7-25, но в BIOS по-прежнему оставались всё те же значения 5-5-5-14.
Дополнительные тайминги вынесены на отдельную страницу Advanced Timing Control.
Часть таймингов можно устанавливать индивидуально для каждого из каналов, в том числе и задавать уровень Performance Level с помощью параметра Static tRead Value.
Группа параметров Mother Board Voltage Control разбита на подгруппы, относящиеся к процессору, чипсету и памяти. Удобно, что в первом столбце напоминаются стандартные значения параметров, но очень не хватает значений реально установленных платой напряжений. При разгоне плата самостоятельно будет повышать напряжения на процессоре, чипсете и памяти, стоящие в значении Auto. Чтобы оставить для параметра штатное напряжение вне зависимости от разгона, следует установить для него значение Normal.
Слишком большие значения выделяются сиреневым, а опасно высокие – мигающим красным цветом, однако это справедливо только для напряжения на памяти.
В том, что материнская плата Gigabyte GA-EP45-DQ6 способна подать очень высокое напряжение не только на память, можно убедиться, изучив интервалы и шаг изменения параметров:
В разделе MB Intelligent Tweaker (M.I.T.) не хватает только настроек, относящихся к процессорным технологиям, они остались в разделе Advanced BIOS Features.
реклама
Вряд ли вы когда-либо видели столь обширный раздел Integrated Peripherals. Основную роль в его увеличении сыграли, конечно, настройки, относящиеся к четырём сетевым картам платы Gigabyte GA-EP45-DQ6.
Лишь в разделе PC Health Status можно увидеть редкий пример того, как возможности платы Gigabyte GA-EP45-DS3 были неоправданно урезаны по сравнению со своей старшей сестрой. Обе платы, в отличие от предшественниц на чипсете Intel P35 Express, к примеру, или основанных на ещё более ранних наборах логики, не в состоянии самостоятельно определить тип подключенного вентилятора, трёх- он или четырёхконтактный. Но на плате Gigabyte GA-EP45-DQ6 остался параметр CPU Smart Fan Mode, позволяющий вручную выбрать способ регулировки, поэтому она может управлять скоростью вращения трёхконтактных вентиляторов, а Gigabyte GA-EP45-DS3 нет. Даже странно, что такое большое количество не всегда необходимых параметров остались идентичны у обеих плат, а «сэкономить» решили на столь несложной в реализации, но в то же время такой удобной мелочи.
Материнская плата Gigabyte GA-EP45-DQ6 оснащена модулем TPM (Trusted Platform Module), поэтому в BIOS появился новый раздел – Security Chip Configuration, где его можно включить или отключить.
реклама
Это последний раздел в списке, однако сказанным возможности BIOS не ограничиваются. Нельзя не вспомнить о наличии встроенной утилиты для обновления Q-Flash, доступ к которой можно получить из BIOS при нажатии клавиши F8 или при старте платы, нажимая клавишу End. А также о чрезвычайно удобной возможности сохранить полный профиль настроек BIOS по клавише F11, дав ему внятное описание, а при нажатии F12 загрузить нужный.
В целом возможности BIOS у материнских плат Gigabyte вообще, и у Gigabyte GA-EP45-DQ6 в частности, очень неплохие. Однако есть очевидные недостатки и отчётливо видны пути для улучшения, мы уже не раз об этом говорили. Например, было бы удобнее, если бы настройки, относящиеся к процессорным технологиям, перекочевали из раздела Advanced BIOS Features в раздел MB Intelligent Tweaker (M.I.T.). Здесь же, или хотя бы в разделе PC Health Status не помешали бы текущие значения напряжений, установленные платой. И, конечно, оверклокерам давно отравляет жизнь характерный недостаток материнских плат Gigabyte, которые могут неожиданно отказаться от установленных в BIOS настроек и, ничего не сообщая пользователю, продолжить загрузку операционной системы с параметрами по-умолчанию. Только лишь войдя в раздел MB Intelligent Tweaker (M.I.T.), пользователь получит запоздалое уведомление. Хорошо, что хотя бы установленные значения уже не сбрасываются до номинальных, как было когда-то.
реклама
На самом деле, виноват в этом, конечно, сам оверклокер. Ничего не происходит просто так, без всякой причины. Были установлены неоптимальные параметры работы системы, она оказалась переразогнана, хоть и не сильно. И пусть несколько раз загрузка прошла успешно, но в конечном итоге проблема всё же сказалась, и плате пришлось сбросить настройки. Это всё понятно, нужно продолжить работу по подбору подходящих параметров, но почему бы не остановиться при старте и не сообщить о возникшей проблеме?
Вообще-то кое-что уже, кажется, делается. Например, удалось обнаружить, что, если не войти в BIOS и не установить самостоятельно нужные параметры после обнуления CMOS, плата выводит вот такую замечательную картинку:
По истечению отведённого таймером времени плата автоматически загрузит последнюю конфигурацию, при которой старт прошёл успешно. Однако пользователь может самостоятельно выбрать один из предварительно сохранённых профилей или же войти в BIOS, чтобы установить иные параметры. Просто, но это простота, граничащая с гениальностью. Это намного лучше, чем остановиться и ждать решения пользователя, как поступают многие другие платы. Если компании Gigabyte удастся реализовать подобное поведение плат при переразгоне, то они сразу на несколько шагов опередят всех конкурентов. Пока же платы Gigabyte выбирают наихудший выход – молчаливый сброс настроек и продолжение загрузки.
В завершение можно только повторить, что, несмотря на отдельные недостатки BIOS, у материнской платы Gigabyte GA-EP45-DQ6 имеются все необходимые теоретические возможности для успешного разгона системы. Теперь осталось узнать, как эти способности реализованы на практике.
реклама
Проверка на разгон
Испытания проходили на открытом тестовом стенде, включающем следующий набор компонентов:
Мысль о том, что при сходстве параметров BIOS у плат Gigabyte, основанных на наборе логики Intel P45 Express, и результаты разгона у Gigabyte GA-EP45-DQ6 могут оказаться похожими на Gigabyte GA-EP45-DS3, то есть не самыми хорошими, пришла в голову только сейчас. Для начала мы просто проверили работоспособность платы при работе процессора Intel Core 2 Duo E8400 в штатном режиме. Никаких проблем замечено не было, причём оказалось, что плата действительно устанавливает для памяти частоту 1066 МГц, а тайминги соответствуют заявленным в BIOS, то есть 5-5-5-14-2T. Уровень Performance Level при этом был равен шести, а напряжение на модулях памяти плата самостоятельно повысила до 2.1 В, вероятно, считав это значение из расширенного профиля EPP. Отличные показатели для режима работы по-умолчанию.
Затем была проведена минимально необходимая подготовка к разгону процессора и выяснению оверклокерского потенциала платы. Коэффициент умножения процессора был снижен до самого низкого из доступных – х6. Для памяти режим по-умолчанию Turbo параметра Performance Enhance был изменён на Standard, и установлен делитель 1:1 по отношению к FSB. Ничего больше не меняя, оставив все остальные параметры на своих номинальных значениях, мы установили частоту шины FSB 500 МГц и попробовали стартовать. Попытка закончилась благополучно, плата успешно загрузила операционную систему, но уже на следующем этапе пришлось остановиться. На частоте 520 МГц плата могла лишь запускаться.
Что же, пришло время посмотреть, какие значения напряжений устанавливает плата при разгоне в автоматическом режиме. К сожалению, возможности мониторинга Gigabyte GA-EP45-DQ6 не позволяют нам узнать значения всех интересующих нас параметров. В разделе PC Health Status в BIOS мы можем посмотреть лишь напряжения, которые подаются на процессор и память, поэтому воспользуемся фирменной утилитой Gigabyte EasyTune 6. По-привычке чуть было не написал «вынуждены были воспользоваться», однако в своём нынешнем виде утилита представляет собой редкий, возможно, даже единственный пример программы от производителя, которой можно и даже удобно пользоваться. Возможности утилиты мы подробно рассматривали в обзоре платы Gigabyte GA-EP45-DS3.
реклама
Оказалось, что плата устанавливает довольно высокие значения напряжений CPU Termination и CPU PLL, а вот напряжение на северном мосту чипсета повышается примерно только до 1.4 В, чего в данных условиях явно недостаточно. Увеличиваем MCH Core до 1.46 В после чего начинается триумфальное восхождение материнской платы Gigabyte GA-EP45-DQ6 к вершинам оверклокинга. Частоты 520, 525, 530 и 540 МГц FSB покоряются ей без труда, небольшая заминка возникает на частоте 550 МГц, но, после увеличения напряжения на северном мосту до 1.48 В, и эта планка пала!
Очевидно, что материнской плате Gigabyte GA-EP45-DQ6 великолепно покоряются высокие частоты FSB, однако процессор при этом работал с минимально возможным коэффициентом умножения х6 и его итоговая частота лишь незначительно превышала номинальные 3.0 ГГц. Получится ли у нас разогнать его на столь высоких частотах шины до максимального предела для данного экземпляра CPU, который находится в районе 4.1 ГГц? Нехитрые вычисления показали, что итоговую частоту 4.1 ГГц мы получим, если установим частоту FSB 547 МГц, а коэффициент умножения процессора будет равен х7.5. Быстренько выставляем в BIOS нужные значения, система загружает Windows, однако сразу же после начала проверки в Intel BurnTest моментально возникает синий экран смерти.
Причина выяснилась сразу же. В оверклокерском азарте был установлен нужный коэффициент умножения процессора, повышены напряжения, но частота FSB не была уменьшена до 547 МГц, а это явно превышает возможности нашего тестового экземпляра процессора.
реклама
Впрочем, даже после коррекции параметров добиться стабильности при частоте процессора 4.1 ГГц никак не удавалось. И опять мы слишком спешим, мы же даже не выяснили, а способна ли в принципе плата обеспечить работу процессора на этой частоте? Повышаем коэффициент умножения процессора до номинального х9, частоту FSB устанавливаем 455 МГц. Тут уж слишком высокая частота шины или памяти не может помешать разгону процессора, но тесты всё равно никак не удаётся пройти. Тогда снижаем частоту FSB всего лишь на 5 МГц, с 455 до 450 МГц. Немного, но этого уже оказывается достаточно для успешного прохождения тестовых проверок. Итоговая частота процессора при этом составляет 4.05 ГГц (450х9).
Теперь, уже точно зная, до какой частоты плата способна разогнать процессор, вычисляем, какую частоту шины нужно установить, чтобы процессор с коэффициентом умножения х7.5 разогнался до 4.05 ГГц. Получается 540 МГц (540х7.5=4050). Выставляем нужные параметры, и плата без заметных усилий легко выдерживает проверку!
Нужно сказать, что этот экземпляр процессора Intel Core 2 Duo E8400 работает у нас в качестве тестового с начала этого года. За этот период было протестировано более полутора десятков материнских плат самых разных классов и категорий, от самых разных производителей. Но до сих пор только однажды потребовалось уменьшать коэффициент умножения процессора до х7.5, чтобы полностью раскрыть его оверклокерский потенциал. Такая необходимость возникла впервые во время проверки платы MSI X48 Platinum, а сейчас лишь второй раз, благодаря превосходным способностям материнской платы Gigabyte GA-EP45-DQ6. Впрочем, кроме этого очевидного достижения у платы от MSI обнаружилось немало недостатков, в отличие от нашей сегодняшней героини.
Даже на этом раннем этапе проверки системная плата Gigabyte GA-EP45-DQ6 уже успела заслужить нашу высокую оценку за небывалые успехи в оверклокинге процессора Intel Core 2 Duo E8400. Однако разогнать CPU – это только половина дела. Чтобы добиться высокого итогового уровня производительности, нужно, чтобы разгон процессора подкреплялся эффективной работой памяти. А у нас, если вы помните, возникли определённые сомнения по этому поводу, поскольку в автоматическом режиме плата при разгоне устанавливала тайминги памяти 5-7-7-25 вместо обещанных 5-5-5-14.
К счастью, все сомнения оказались напрасны. Дальнейшая проверка показала, что плата вполне адекватно реагирует на изменения режимов работы памяти. Для начала значение параметра Performance Enhance было изменено со Standard на Turbo. Плата справилась, хотя тайминги изменились с 5-7-7-25 всего лишь до 5-7-7-24. Тогда были вручную установлены тайминги 5-5-5-15. Это больше соответствует возможностям используемых нами модулей памяти Corsair Dominator TWIN2X2048-9136C5D при работе на частоте 1080 МГц. И опять проверка показала, что стабильность системы на частоте FSB 540 МГц при разгоне процессора до 4.05 ГГц не утеряна. В этих условиях плата повысила уровень Performance Level до 11. В качестве эксперимента уменьшаем его до 10, и вновь плата демонстрирует уверенную работоспособность при прохождении тестов!
Итак, на данном этапе тестирования уже можно твёрдо утверждать, что материнская плата Gigabyte GA-EP45-DQ6 великолепно справляется с разгоном процессоров и памяти. Однако мы использовали двухъядерный процессор, между тем известно, что разгон четырёхъядерных CPU доставляет платам намного больше хлопот, так что проверка ещё не закончена.
Подавляющее большинство материнских плат при разгоне четырёхъядерных процессоров останавливается где-то в районе 450 МГц FSB, многие не добираются даже до этой отметки, хотя при разгоне двухъядерных CPU им обычно покоряются заметно более высокие частоты. Долгое время рекордсменом по разгону нашего тестового процессора Intel Core 2 Quad Q9300 оставалась системная плата abit IP35 Pro. Ей удалось разогнать процессор до 475 МГц по шине, и ни одна другая плата не могла приблизиться к этому результату. Мы даже полагали, что это максимальный предел разгона этого экземпляра процессора, но летом этого года на пьедестал взошла плата ZOTAC nForce 790i-Supreme, которой удалось поднять частоту стабильной работы процессора сразу до 490 МГц FSB, а после некоторых усилий и до феноменальных 495 МГц. Посмотрим, как с такой же задачей справится материнская плата Gigabyte GA-EP45-DQ6.
Проверка показала, что плате легко удаётся загрузить операционную систему при разгоне процессора до 450, до 470 и даже до 490 МГц FSB. А вот на частоте 500 МГц это долго не получалось, а когда всё же удалось, то не вышло подтвердить стабильность работы. Не смогли мы добиться успеха и на частоте 495 МГц, зато при FSB 490 МГц тест был пройден.
Ну, что тут можно сказать? Мы видели не так уж мало плат, которые неплохо разгоняют двухъядерные процессоры и память. Знаем несколько примеров, когда некоторые платы лучше других справляются с разгоном четырёхъядерных CPU. Но за всё время мы ни разу не встречали такой материнской платы, которая настолько гармонично сочетала бы эти возможности, как Gigabyte GA-EP45-DQ6.
Как работает автоматическое повышение частот у процессоров Intel и AMD
Содержание
Содержание
За производительность компьютера отвечают не только ядра и потоки. В современных чипах производители управляют частотой и вычислительной мощностью при помощи технологий Intel Turbo Boost и AMD Precision Boost. Но у каждой из них есть свои нюансы и особенности. Чтобы разобраться, как они работают, нужно понять, что такое частота, почему она тактовая, и как это влияет на мощность процессора.
Почему частота «тактовая»?
Если говорить просто, частота — это повторяющиеся действия. Частота указывает только быстроту объекта, но не его производительность. Например, двигатель внутреннего сгорания вращает маховик со скоростью 2000 оборотов в минуту. При этом он может выдавать разную полезную мощность.
С помощью тактов обозначают производительность — количество выполненной полезной работы за одно движение. Чтобы разобраться в значении тактов и частоты, можно обратиться к математике. Например, перед нами находятся два колеса, у одного из них радиус 10 дюймов, у другого — 20 дюймов, поэтому, несмотря на одинаковую частоту вращения, колеса будут иметь разную скорость. В этом случае обороты можно принять за такты, а километраж, который колесо проезжает за один оборот — тактовой частотой или производительностью. Отсюда следует, что просто частота — это не качественное, а количественное обозначение. А частота с указанием такта — это уже показатель производительности. Именно тактовая частота указывает на производительность процессоров.
Регулируемая частота
Процессоры — это микросхемы, которые включают миллиарды транзисторов. Высокая плотность компоновки позволяет уместить в одном квадратном сантиметре электрическую схему размером с футбольное поле. Такая конструктивная особенность ставит жесткие условия для работы электроники.
Так, для эффективной работы процессору приходится динамически управлять тактовой частотой. Это полезно для производительности или, наоборот, для снижения нагрева и потребления, поскольку система балансирует на идеальном соотношении мощности и эффективности.
Фирменные технологии, включая Intel Turbo Boost и AMD Precision Boost, лишь частично отвечают за работу алгоритмов управления частотой, их основная цель — повышение частоты сверх базового значения (разгон). Однако динамическая частота берет начало далеко за пределами процессорных технологий — отправной точкой в формировании частоты процессора является тактовый генератор.
Тактовый генератор
Это микросхема, которая синхронизирует работу компьютерных комплектующих. Другими словами, это точные часы, которые независимо и равномерно отбивают такт за тактом. Основываясь на времени между тактами, остальная электроника понимает, когда и как нужно работать.
В современных системах частота тактового генератора зафиксирована на отметке 100 МГц, хотя и может варьироваться в пределах нескольких процентов, чтобы избежать интерференции собственного излучения с высокочастотным излучением других компонентов.
Множитель
Процессор управляет частотой ядер с помощью множителя. Чтобы получить необходимую частоту ядер, система умножает постоянное значение частоты генератора на необходимое значение множителя. В таком случае динамическая частота касается только процессора, тогда как остальные компоненты подчиняются собственным правилам формирования частоты.
До появления новых процессоров, множитель оставался постоянной величиной, потому что его блокировали на заводе аппаратно. Пользователи довольствовались ручной регулировкой частоты через шину: чем выше частота тактового генератора, тем выше частота ядер. В прошлом комплектующие не требовали предельно стабильной частоты BCLK, а в современных платформах ей уделяют особое внимание.
Например, разгоняя систему через шину, мы не только поднимаем частоту процессора, но и увеличиваем частоту оперативной памяти, графического ядра и даже накопителей. К перепадам частоты чувствителен контроллер твердотельного накопителя: он может сыпать ошибками даже при колебаниях шины на 2-3 МГц от заводского значения. Чтобы избежать этого, производители сделали множитель динамическим.
Как работает автоматическая регулировка частоты
Высокая тактовая частота просто необходима для вычислительной мощности ядер. Однако, лишние мегагерцы не только повышают производительность чипа, но также влияют на энергопотребление, нагрев, стабильность и даже безопасность системы. С появлением мощных процессоров появилась необходимость управлять частотой так, чтобы компьютер работал сбалансированно. Есть нагрузка — есть частота, нет нагрузки — процессор отдыхает и не греет воздух в корпусе.
Сначала динамическая частота использовалась для экономии энергии, позже процессоры научились автоматически разгоняться. Производители процессоров догадались, насколько выгодно выпускать чипы, разогнанные с завода. Поэтому тонкое управление частотой и другими параметрами теперь берут на себя фирменные технологии, такие как Intel Turbo Boost и AMD Precision Boost.
Intel Turbo Boost
История фирменной технологии начинается с процессоров i7 серии 9xx. Это семейство Bloomfield, в модельном ряду которого появились чипы с поддержкой технологии Hyper Threading и, конечно, Intel Turbo Boost.
Первая версия позволяла разгонять процессор всего на 200-300 МГц выше базовой частоты. Это было физическим ограничением: кремний того времени тяжело переваривал разгон, и без существенного повышения температуры и напряжения было сложно взять рекордные цифры в полной нагрузке на все ядра.
Но вместе с развитием полупроводников и техпроцессов процессоры приобрели врожденную способность к хорошему разгону. Теперь поднять частоту на 1 ГГц от базовой не составляет труда даже автоматике, особенно после того, как в Intel доработали фирменную технологию и представили несколько дополнительных алгоритмов. Вторая версия Intel Turbo Boost появилась в процессорах еще в 2010 году и по сей день работает даже в самых совершенных и актуальных чипах семейства Rocket Lake.
Как это работает
С помощью технологии Turbo Boost 2.0 процессор управляет тактовой частотой так, чтобы ядра оставались производительными во всех нагрузках без перегрева и выхода за рамки заводского теплопакета. Правда, есть несколько нюансов. Рассмотрим работу Turbo Boost на процессорах Coffee Lake.
Например, TDP процессора составляет 95 ватт, но при этом система буста позволяет процессору в течение некоторого времени работать с большим энергопотреблением. Эти параметры настраиваются автоматически, а материнские платы на базе Z-чипсетов даже позволяют регулировать их вручную:
Настройки, выделенные красным блоком на скриншоте, относятся к технологии Turbo Boost. Это основные параметры, которые влияют на работу автоматического разгона и задают максимумы для разгона процессора. Параметр «Long Duration Package Power Limit» инженеры Intel называют PL1 — это заводской уровень энергопотребления (TDP), который является опорным для работы Turbo Boost. Для Core i7 9700K значение PL1 составляет 95 ватт.
Для работы буста производитель предусмотрел второе значение — Short Duration Package Power Limit или PL2. Этот параметр влияет на абсолютный предел энергопотребления процессора в нагрузке и бусте на все ядра. Стандартная формула для подсчета этого параметра следующая: PL2 = PL1*1.25
В таком случае «вторая скорость» восьмиядерного 9700K может достигать 120 ватт. По замыслу инженеров, именно столько энергии потребляет процессор в заводском разгоне, чтобы оставаться в безопасных значениях по напряжению и нагреву. Правда, чтобы защитить процессор, режим PL2 может работать только ограниченный промежуток времени, после чего откатывается к потреблению по правилам PL1. Это время обозначается как «Package Power Time Window» или «Tau».
Основываясь на этих лимитах, процессоры Intel регулируют частоту. Например, если теплопакет процессора остается в рамках PL1, то частота будет достигать максимума. Если же процессор нагружен так, что его энергопотребление превышает режим PL1 и достигает PL2, то повышенная частота продержится на высоких значениях только заявленное время Tau, а затем вернется на безопасные значения. Intel неохотно раскрывает подробные параметры, однако энтузиасты смогли раздобыть немного интересной информации о семействе Coffee Lake:
Частота процессора в режиме Turbo Boost подчиняется опорной частоте (тактовый генератор) и значению множителя, а также зависит от параметров энергопотребления процессора. Стоит сказать, что настоящие значения PL2 и Tau не всегда соответствуют тем, которые можно рассчитать или найти в открытых источниках. Например, тот же Core i7 9700K может с лихвой перевалить за 140 ватт и работать, если позволяют система охлаждения и подсистема питания.
А можно еще быстрее?
Новые процессоры Intel поддерживают не только Turbo Boost 2.0, но и несколько «надстроек». Это Turbo Boost Max 3.0, Intel Velocity Boost и Intel Adaptive Boost, которые не заменяют основной алгоритм повышения частоты, а расширяют его функционал.
Intel Turbo Boost Max 3.0 — дополнение к основному бусту. Технология сочетает аппаратные алгоритмы Turbo Boost 2.0 и программные, которые определяют самые быстрые ядра процессора и делегируют им однопоточные задачи. В результате частота удачных ядер может подниматься на 15% выше пределов по Turbo Boost. Кроме хорошего охлаждения и питания, для работы технологии необходим соответствующий процессор, а также Windows 10 последней версии.
Intel Velocity Boost — надстройка над заводским разгоном, а также над Turbo Boost 3.0. Алгоритм следит за температурой и позволяет работать всем ядрам процессора с более высокой частотой, если температура не превышает условного значения. Например, для процессоров Comet Lake это значение соответствует 70 °C. Таким образом, десятиядерный процессор может достигать 4.9 ГГц по всем ядрам, тогда как стандартный буст разгонит процессор всего до 4.8 ГГц.
Intel Adaptive Boost — новая технология, она еще не изучена вдоль и поперек, как остальные, но некоторые подробности уже известны. Первыми поддержку получили процессоры Core i9 11900K и Core i9 11900KF семейства Rocket Lake. Принцип работы нового алгоритма заключается в отслеживании температуры ядер и лимитов энергопотребления. Если все данные сходятся в допустимых пределах, то технология разгоняет ядра еще сильнее, чем обычный Turbo Boost и Velocity Boost, позволяя всем потокам одновременно достигать 5.1 ГГц, вместо 4.7 ГГц в стандартном бусте.
Поддержка технологий регулировки частоты зависит от модели процессора, а также его поколения. Например, Velocity Boost, как и новейший Adaptive Boost, поддерживается только топовыми Core i9, тогда как Turbo Boost 2.0 можно встретить даже в моделях Intel Core i3.
AMD Precision Boost
У красного лагеря свое понимание заводского разгона, которое несколько отличается от конкурентов. Например, AMD не привязывает частоту к целым значениям от шины и может регулировать ее вплоть до 25 МГц, тогда как буст Intel всегда кратен 100 МГц. Отсюда и название Precision Boost — «точный разгон». В то же время, принцип регулировки завязан на лимиты потребления, температуры и частоты почти так же, как и Core.
Двое из ларца
В жизни процессоров AMD было несколько технологий настройки частоты. Прошлые поколения использовали алгоритмы Turbo Core, а с появлением ядер Zen и процессоров Ryzen инженеры придумали технологию Precision Boost, которая позже превратилась в версию 2.0. Принцип работы обеих версий турбобуста идентичен. Разгон ядер подчиняется трем ограничениям: температура, мощность и частота. Если представить их в виде равнобедренного треугольника, как это делают инженеры AMD, то получится так:
Синий треугольник обозначает максимумы для каждого из трех пределов процессора. Сиреневый треугольник показывает, каким образом параметры влияют друг на друга при достижении одного из лимитов. Если проще, то, как только процессор упрется в энергопотребление, частота перестанет повышаться и зафиксируется в пределах 25 МГц от лимита частоты (отмечено черным цветом).
Если же процессор быстрее достигнет максимальной температуры, а не лимита потребления, то частота также остановится на определенном, но не максимальном значении. В то же время, если процессор эффективно охлаждается и не ограничен по питанию, то лимит частоты будет пройден, а максимальная тактовая частота процессора достигнет заводского предела — вершины синего треугольника.
Так работает Precision Boost обеих версий. Единственный минус первой версии PB — жесткое снижение частоты при загрузке более двух ядер. Обратимся к наглядному графику:
Сиреневым цветом обозначена работа Precision Boost первой версии, которая работает следующим образом: когда система нагружает одно или два ядра, алгоритм разгона поднимает частоту на максимум, заложенный в процессор с завода.
В случае, если система нагрузит больше двух потоков, буст резко снизит частоту. Получается, что в таком режиме процессор остается производительным только в однопоточных заданиях, а при одновременной нагрузке хотя бы трех ядер резко теряет вычислительную мощность.
Вторая версия алгоритма Precision Boost 2 меняет подход к управлению частотой в зависимости от нагрузки. Во-первых, новая технология позволяет процессорам работать с более высокими частотами. Во-вторых, при нагрузке на все ядра система не сбрасывает частоту резко, а делает это плавно, от ядра к ядру. На графике это обозначено оранжевой линией.
Впрочем, автоматическая регулировка частоты не ограничена физическими лимитами процессора. AMD заявляет, что алгоритмы Precision Boost 2 стали хитрее, поэтому максимальная частота ядер достигается не только в пределах температуры, напряжения и энергопотребления, но также зависит от задач. Например, в приложениях с невысокой нагрузкой на процессор, ядра будут работать на повышенных частотах, даже если это нагрузка сразу на все потоки. В то же время процессор будет немного снижать частоту в рендеринге и других трудоемких заданиях.
Заводской Boost лучше ручного разгона
Производителям удалось сделать то, к чему пользователи стремились в течение многих лет: современные процессоры работают намного эффективнее предшественников благодаря автоматической частоте. Если раньше энтузиасты настраивали частоту ядер через аппаратные модификации материнских плат и процессоров, то сегодня для настройки достаточно нажать кнопку «Включить» на системном блоке. Остальное за нас сделает автоматика.
Порой она работает эффективнее, чем ручная настройка. Когда мануальный разгон заставляет все ядра работать с одинаковой частотой, турбобуст позволяет разгонять отдельные ядра выше, чем это возможно в ручном режиме. Поэтому однопоточная производительность актуальных чипов показывает неплохие цифры, которых не всегда можно добиться настройками в BIOS.
Более того, заводские алгоритмы повышения частоты следят за состоянием процессора и подсистемы питания, они не позволят электронике работать на пределе стабильности и безопасности. Неопытный пользователь вряд ли обеспечит системе такой уровень качества, настраивая частоту и напряжение на ядрах самостоятельно.
Огромный плюс заводского буста — высокая тактовая частота даже на процессорах с заблокированным разгоном. Поэтому даже бюджетный шестиядерный процессор все еще эффективен в играх и там, где важен показатель IPC — однопоточной производительности.