Eps блок питания что это
Блоки питания стандарта EPS12V.
Блоки питания стандарта EPS12V.
Требования, предъявляемые к высококачественным устройствам, очень жесткие и все блоки питания им должны соответствовать. Для оценки качества блока питания используются различные критерии. Многие потребители при покупке компьютера пренебрегают значением источника питания, и поэтому некоторые сборщики персональных компьютеров сокращают расходы на него. Ведь не секрет, что гораздо чаще цена компьютера увеличивается за счет дополнительной памяти или жесткого диска большей емкости, а не за счет более совершенного источника питания.
Недостаточная мощность блока питания ограничивает возможности расширения компьютера, но достаточно часто компьютеры выпускаются с довольно мощными блоками питания, учитывая, что в будущем в систему будут установлены новые (дополнительные) узлы. Паспортное значение мощности, указанное на блоке питания как всем известно это еще не все данные о блоке питания, которые мы должны учитывать. Дешевые блоки питания наверняка могут развивать мощность, указанную в паспорте, но а как у них обстоят дела с другими характеристиками? Одни блоки питания с трудом отрабатывают свои параметры, а другие работают надежно и с большим запасом. Многим дешевым блокам питания свойственны нестабильные выходные напряжения, в них также присутствуют шумы и помехи, а это, как известно приводит к многочисленным неприятным проблемам. Как правило, такие источники питания сильно нагреваются сами и греют все остальные компоненты системного блока компьютера. Замена установленного в компьютере блока питания на более мощный обычно не является проблемой, т. к. конструкции блоков питания стандартизованы, и найти замену для большинства систем достаточно просто.
Ремонт высококачественных и дорогих блоков питания экономически выгоден и практически возможен при наличии подготовленного ремонтного персонала (например на курсах).
Изменение потребляемой мощности, состава оборудования, элементной базы, номиналов напряжений питания и конструкции ПК соответственно потребовало изменения стандартов форм-факторов блоков питания.
EPS12V
Введение
Правильное качественное питание настольного компьютера можно назвать одним из наиболее важных вопросов, решаемых в процессе конструирования надёжной производительной системы. Разумеется, в современном ПК предостаточно значительно более сложных компонентов, нежели блок питания, однако именно от качества работы последнего в конечном итоге зависит стабильность системы в целом. Впрочем, как и безопасность пользователя: не стоит забывать, что БП – это единственный компонент системы, работающий непосредственно с напряжением переменного тока силовой сети.
Компоненты для ПК производят сотни компаний, блоки питания выпускаются фабриками десятка-другого производителей и поступают в продажу под своей торговой маркой или с маркировкой многочисленных OEM-заказчиков. Совместимость разнообразного компьютерного железа с источниками питания определяется сводом индустриальных стандартов, жёстко регламентирующих ключевые параметры качества питания и описывающих дополнительные характеристики в рекомендательной форме.
Основная цель этой публикации – рассказать о ключевых параметрах блоков питания, объяснить разницу между обязательными и рекомендованными характеристиками, то есть, представить всю необходимую информацию по имеющимся стандартам перед тем, как вы углубитесь в магазинные прайс-листы в поисках подходящего блока питания. Для тех, кто желает изучить требования, предъявляемые к блокам питания более глубоко и детально, в конце этой статьи приведён список ссылок на документы всех ключевых стандартов в этой области.
Стандарты блоков питания для ПК
По общепринятому определению, компьютерный блок питания – это силовой компонент системы, обеспечивающий питанием остальные элементы ПК. С точки зрения схемотехники, БП представляет собой модуль для преобразования переменного тока силовой сети 100-127В (США, Японии и на Тайване, а также местами в Южной Америке) или 220-240В (Европа и большинство других стран мира) в постоянный ток с уровнями напряжения, приемлемыми для питания компонентов компьютера.
Блок питания – лишь один из компонентов компьютерной системы, поэтому его ключевые характеристики определяются в качестве одной из многочисленных рекомендаций к системам определённого форм-фактора, а не наоборот. Например, именно стандартный форм-фактор ATX (Advanced Technology Extended), разработанный Intel в 1995 году, определяет габариты и другие характеристики блока питания, а не БП определяет форму систем ATX.
Изначально блоки питания, рассчитанные для работы в настольных компьютерных системах, в большинстве своём рассчитывались согласно требованиям стандарта ATX12V. Так было до версии стандарта ATX12V 2.2 (выпущена в марте 2005), после чего было принято решение объединить в едином документе требования по всем общепринятым форм-факторам настольных платформ, включая CFX12V, LFX12V, ATX12V, SFX12V и TFX12V. Со временем появился документ «Design Guide for Desktop Platform Form Factors, Revision 1.1» (март 2007), актуальный и по сей день.
Для справки: форм-факторы компьютеров определяются, главным образом, форматом системных плат, размеры некоторых из них приведены ниже в миллиметрах:
Таким образом, если вы увидите в спецификациях блока питания упоминание о «соответствии стандарту ATX12V 2.3», имейте в виду, что такого документа в природе не существует. Последним, отдельно представленным документом был ATX12V 2.2, а маркировка версии «2.3» означает соответствие требованиям подпункта «ATX12V Specific Guidelines 2.3» в выше упомянутом документе руководства по дизайну настольных платформ, версии 1.1, общем для всех настольных форм-факторов.
Несмотря на то, что ATX12V является лишь подмножеством среди других форм-факторов ПК, говоря о настольных системах, мы обычно подразумеваем именно этот стандарт. Если, конечно, не идёт речь о миниатюрных «примочках к телевизору» для просмотра видео, компактных офисных машинках, серверных системах и прочих особых случаях, не вписывающихся в определение домашней или игровой настольной системы. Сегодня речь идёт именно о блоках питания ATX12V.
Также следует отметить, что публикация новых стандартов по блокам питания не отменяет предыдущие рекомендации и требования, а, как правило, лишь ужесточает их. Поэтому, сегодня мы изучим стандарт ATX12V 2.2, и в дополнение к нему дополнения «ATX12V Specific Guidelines 2.3» из документа «Design Guide for Desktop Platform Form Factors, Revision 1.1».
Требования этих документов можно назвать достаточными для выбора модели БП, подходящей для конструирования системы в целом, однако если говорить о конструировании именно современной системы, к обязательному рассмотрению необходимо принять ещё как минимум один документ – рекомендации 80PLUS.
Так или иначе, часть подводимой к ПК мощности рассеивается непосредственно самим блоком питания процессе его работы. Например, суммарное энергопотребление системы порядка 500 Вт и КПД блока питания уровня 75% на практике означают, что БП тратит на себя четверть потребляемой энергии. Около 125 Вт – а это мощность приличного паяльника, уходят у БП на «обогрев» самого себя! Если же БП обладает более высоким КПД – скажем, 87%, расходы на оплату электричества, равно как и охлаждение системы, можно значительно сократить.
Ещё один интересный пример. Допустим, вы запланировали купить блок питания «с запасом». Мало ли… Выбор пал на блок киловаттной мощности. Запас карман не тянет? Может быть, но не в случае с блоками питания. Представьте, как будет «вести» себя БП мощностью 1 кВт в системе, максимальная нагрузка которой даже на пике не превышает 500 Вт, от силы – 600 Вт. Редкая современная система – даже на 6-ядерном процессоре и паре мощнейших видеокарт, потребляет большую мощность.
Обычно блоки питания выходят на хороший показатель КПД при нагрузке от 40-50% и выше, оптимум – в районе 70-100% нагрузки. При меньшей загруженности коэффициент полезного действия обычно ниже. Посчитаем: киловаттник, да ещё и в случае, если он сертифицирован только по стандарту ATX12V, «обязан» показывать КПД при лёгкой загруженности на уровне 65-72%, то есть, нагрузив такой БП лишь 400-Вт нагрузкой, более четверти энергии будет затрачено на обогрев, а с учётом того, что большинство производительных настольных систем потребляют при нормальной нагрузке не более 250-350 Вт, потери могут достигать трети всей потребляемой энергии.
Вот почему к рекомендациям 80PLUS не стоит относиться пренебрежительно, как и в целом, к выбору блока питания не стоит подходить по остаточному принципу.
Стандарт ATX12V 2.2
Прежде всего, стандарт описывает требования ко входному напряжению силовой сети, с которым должен работать блок питания.
Зачем нужны разные разъемы ATX и EPS для материнской платы
Для чего нужны разъемы ATX и EPS на материнской плате?
20 + 4-контактный разъем ATX отвечает за питание практически всех компонентов материнской платы, за исключением процессора, и именно поэтому у нас есть 4 + 4-контактный разъем EPS, который во многих источниках поставляется прямо обозначен как ЦП, поскольку он служит исключительно для обеспечения питания процессора. 20 + 4-контактный ATX предназначен для всего остального, включая порты USB, разъемы PCI-Express, Оперативная память, И т.д.
В свою очередь, разъем EPS имеет следующее распределение контактов:
Разница между двумя разъемами более чем очевидна, поскольку ATX подает разные типы напряжения, в то время как EPS подает только 12 В, исключительно для процессора и его контроллера напряжения (известные VRM на материнской плате, которые в конечном итоге фильтруют и преобразуют напряжение, которое достигает его, чтобы обеспечить то, что нужно процессору).
Почему два разъема не объединены в один?
Теперь, когда мы знаем, что делает каждый из двух разъемов, питающих материнскую плату, неизбежно возникает вопрос: если разъем ATX уже подает +12 В, зачем нам EPS?
Таким образом, если, например, материнской плате требуется 1.35 В для обслуживания оперативной памяти, она будет использовать + 3.3V рейка поскольку он самый близкий, но когда мы говорим, например, о портах USB, тогда он будет использовать шину +5 В без необходимости что-либо преобразовывать. По возможности это еще больше сбивает с толку, потому что, если процессоры работают в диапазонах, которые едва превышают 1 вольт текущего напряжения, почему тогда они выдают 12 В?
Ответ прост: поля и контроль. Материнские платы и особенно высококачественные материнские платы, ориентированные на оверклокинг, имеют сложную схему преобразования и фильтрации. VRM (модуль регулятора напряжения) для точной настройки напряжения, подаваемого на процессор. Поскольку работа и скорость процессора зависят от напряжения, процессор подается на ближайшие тысячные (иногда даже десятитысячные), чего не может гарантировать преобразователь напряжения в самом блоке питания, так как он обеспечивает питание более грубым и не очень тонким способом.
Таким образом, было решено использовать два разных кабеля от источника питания для обслуживания материнской платы, чтобы оставить один исключительно для точной настройки, необходимой процессорам. Их действительно можно было бы объединить в один разъем, если бы они захотели, но это было бы практически похоже на создание 32-контактный Разъем (24 + 8) для простого соединения всех контактов, необходимых для работы, не больше и не меньше.
СОБЕРИ САМ
Блоки питания: конструкция, форм-факторы и спецификации
Современные форм-факторы: EPS, TFX, CFX, LFX и Flex ATX
EPS/EPS12V
Со временем спецификации блоков питания EPS/EPS12V были повышены и сейчас можно предположить, какие потенциальные усовершенствования могут быть реализованы в стандарте ATX. Сегодня основная разница между ATX и EPS относительно разъёмов питания заключается в том, что стандарт EPS12V предполагает использование двойного 8-контактного разъёма +12 V вместо 4-контактного в блоках питания стандарта ATX12V.
Двойной 8-контактный разъём +12 В, по-сути, эквивалентен двум 4-контактным разъёмам, которые заделаны вместе, и он используется в серверах начального уровня для питания нескольких процессоров. Конструкция такого разъёма на блоках питания позволяет подключить его к обычной материнской плате форм-фактора ATX, оставив свободными четыре дополнительных выхода.
Ещё одно (и последнее) существенное различие EPS12V и ATX12V заключается в том, что блок питания стандарта EPS может достигать в глубину 180 или 230 мм, в то время, как блок питания ATX имеет ограничение до 140 мм в глубину в соответствии с его спецификацией. Пример блока питания стандарта EPS12V приведён на следующей фотографии:
Данный блок питания стандарта EPS12V имеет глубину 230 мм и может использоваться вместо обычного БП ATX12V, если корпус позволяет его установить. БП стандарта EPS12V иногда называют «расширенным ATX», так как они имеют более вытянутый корпус. Если вы планируете использовать один из таких БП в стандартом корпусе ATX необходимо, чтобы вы предварительно удостоверились, что в вашем корпусе имеется дополнительное пространство, чтобы установить в него блок питания, имеющий глубину больше стандартного значения 140 мм. Совместимость разъёмов в данном случае не выступает как лимитирующий фактор по причине конструкции разъёма Molex Mini-Fit: вы можете подключить 24-контактный разъём от блока питания к разъёму для 20-контактного коннектора на материнской плате. Точно так же можно подключать и 8-контактный двойной коннектор +12 V к обычному гнезду +12 В на материнской плате ATX. Таким образом, если вам позволяет свободное пространство внутри корпуса ATX, мы можете установить БП стандарта EPS12V, чтобы получить более высокую мощность.
TFX12V
Блок питания стандарта TFX12V (Thin Form Factor) впервые представлен компанией Intel в апреле 2002 года и спроектирован для систем форм-фактора SFF объёмом около 9-15 литров, прежде всего таких, где используются низкопрофильные корпуса, соответствующие спецификации SFF, и материнские платы форм-факторов microATX, FlexATX или Mini-ATX. Относительно БП ATX и SFX форма TFX12V более вытянута в длину и имеет наклон, что позволяет проще устанавливать такой БП в низкопрофильные корпуса. Размеры форм-фактора TFX12V отражены на следующей схеме:
В отличие от блоков питания, выполненных в форм-факторе SFX, стандартизованы только физические габариты БП TFX12V. Блоки питания TFX12V также всегда включали 4-контактный разъём +12 В с тех пор, как стандарт появился в апреле 2002 года (в это же время разъём +12 В появился в БП, имеющих другие форм-факторы). В версии TFX12V 1.2 (апрель 2003) был добавлен в качестве опции разъём питания Serial ATA, тогда как версия TFX12V 2.0, представленная в феврале 2004, сделала коннекторы питания SATA обязательными для всех БП, а основной 20-контактный разъём питания был заменён на 24-контактный. Ревизия 2.1 (июль 2005) включает лишь незначительные отличия от предшествующей версии.
CFX12V
Блоки питания форм-фактора CFX12V (Compact Form Factor) первоначально были представлены компанией Intel в ноябре 2003 года и предназначены для систем среднего размера стандарта BTX (Balanced Technology Extended) объёмом 10-15 литров, в которых используются материнские платы microBTX или picoBTX.
Блоки питания CFX12V разрабатывались для обеспечения выходной мощности 220-300 Вт, что вполне соответствует потребностям средних по размеру систем. БП CFX12V включает 80-мм вентилятор, закреплённый на задней стенке и оснащённый термостатом, что обеспечивает эффективную и тихую работу, так как скорость вращения регулируется в зависимости от температуры внутри корпуса. Форма такого блока питания имеет выступ, что позволяет более эффективно использовать пространство внутри корпуса, уменьшая общий размер системы. Размеры блока питания CFX12V показаны на схеме, приведённой ниже:
Блоки питания CFX12V изначально включали 4-контактный разъём +12 В, как только данный стандарт был представлен в ноябре 2003 года (позднее такие же разъёмы стали распространены в более популярных форм-факторах БП). Блок питания TFX12V также включал основной 24-контактный разъём для материнской платы и разъёмы питания для устройств Serial ATA. Текущая ревизия CFX12V 1.2, представленная в 2005 году, имеет лишь незначительные отличия от предшествующей версии, включая использование разъёмов HCS.
LFX12V
Впервые стандарт LFX12V (Low Profile Form Factor) был представлен компанией Intel в апреле 2004 года. Он разрабатывался для ультракомпактных настольных систем, имеющих объём 6-9 литров, прежде всего для использования с материнскими платами форм-факторов picoBTX и nanoBTX.
Блок питания разрабатывался для обеспечения выходной мощности 180-260 Вт, что более чем достаточно для потребностей миниатюрных систем. Блок питания LFX12V включает 60-мм вентилятор, что на 20 мм меньше относительно спецификации CFX12V. Вентилятор подобен своему собрату в БП CFX12V и, как правило, дополняется термостатом, что обеспечивает контроль скорости вращения для обеспечения оптимального баланса между шумом, который производит система, и эффективностью охлаждения. Форма блока питания выполнена таким образом, чтобы оптимально использовать пространство внутри корпуса, что позволяет получить более компактную платформу. Размеры типичного блока питания LFX12V отражены на следующей схеме:
Flex ATX
Компания FSP (Fortron Source Power), один из крупнейших производителей блоков питания, в 2001 году впервые представила свои наработки, которые были впоследствии объединены в форм-фактор Flex ATX как один из основных проприетарных стандартов настольных систем компактного размера (SFF) и тонких серверов (1U).
Данные блоки питания получили распространение в платформах Shuttle, но также использовались у других системных интеграторов, таких как HP/Compaq, IBM, SuperMicro и т.д.
Предприняв попытку превратить данный форм-фактор в официальный стандарт, компания Intel представила форм-фактор Flex ATX как часть ревизии 1.1 и более поздних версий в документе «Руководство по разработке блоков питания для настольных систем» («Power Supply Design Guide for Desktop Platform Form Factors»), опубликованном в марте 2007 года (данный документ доступен на сайте www.formfactors.org). Форм-фактор Flex ATX также часто называют блоками питания 1U (one unit), так как он используется в большинстве серверных корпусов стандарта 1U.
Блоки питания Flex ATX, подобно представленному на рисунке, разработаны таким образом, чтобы обеспечить номинальную выходную мощность от 180 до 270 Вт, что идеально соответствует запросам компактных систем. Стандарт Flex ATX предполагает использование одного или двух вентиляторов диаметром 40 мм, однако, предусмотрена возможность использовать более крупные вентиляторы, которые при этом располагаются горизонтально. Также существуют и модели с пассивным охлаждением.
Как выбрать блок питания для компьютера
Это несколько преувеличено. Сейчас не 2000-е годы, и откровенно некачественных и опасных для эксплуатации блоков в продаже, как в те времена, почти нет. Вариант со сгоревшими от БП комплектующими очень маловероятен. Даже в простеньких стоят различные защиты, реализовать их с развитием схемотехники стало гораздо проще и дешевле. При нехватке мощности компьютер при нагрузке будет просто отключаться.
В данном гайде не будет конкретных рекомендаций, какой блок купить. Рынок очень изменчив, и подобные советы пришлось бы переписывать каждый месяц. Попытаемся определиться с терминологией и разобраться, что же вообще бывает внутри этих железных коробочек с хвостами и как выбрать себе надежный БП.
Основные параметры блоков питания
Форм-фактор
Этот параметр нужно также учитывать при покупке. Производители корпусов обычно пишут, какой максимальной длины БП можно установить в их корпус.
Мощность
Разъемы
Основной 24-контактный разъем.
Наличествует во всех блоках. Чаще всего представлен в виде разделяющегося на 20-контактный и дополнительные 4 контакта. Это было сделано для совместимости со старыми платами с 20-контактным разъемом. Правда, это платы очень древние, и сейчас таких немного, поэтому постепенно производители блоков переходят к цельному разъему в 24 контакта.
Разъем питания процессора
Бывает 4-контактным и 8-контактным (который часто разделяется на два разъема по 4 контакта).
Изначально питание процессора на платах обеспечивалось с помощью 4-контактного разъема, но с ростом энергопотребления процессоров, выросли токи, поэтому применили 8-контактный разъем. На бюджетных платах иногда до сих пор ставят 4-контактный.
Разъемы для питания видеокарты
8-контактный чаще всего представлен в виде разбирающегося разъема 6+2 контакта.
SATA
15-контактный разъем для питания HDD, SSD и прочего.
Molex
4-контактный разъем. Ранее применялся для питания HDD, приводов оптических дисков и прочего. В современном компьютере используется достаточно редко, в основном для питания вентиляторов, реобасов и т. д.
Floppy
Предназначался для питания накопителей на гибких магнитных дисках. Сейчас используется очень редко, поэтому частенько представлен в виде переходника Molex-Floppy.
Кабели
Бывают блоки с отстегивающимися кабелями (модульная конструкция) или жестко закрепленными.
Отстегивающиеся кабели удобны тем, что неиспользуемые можно убрать, чтобы они не захламляли внутреннее пространство корпуса и не мешали охлаждению. Полностью модульные БП удобны еще при снятии блока для чистки, например.
Не нужно для этого вытаскивать проведенные под поддоном корпуса кабели.
К минусам модульной системы относят вероятность плохого контакта в разъемах. Пайка действительно в данном случае надежнее. Впрочем, какого-то массового выгорания контактов у модульных БП так до сих пор и не случилось, хотя единичные случаи есть.
Система охлаждения
1) Активная. Во время работы блока вентилятор вращается постоянно.
2) Полупассивная. При низких нагрузках вентилятор не работает.
3) Пассивная. Вентилятора нет.
Блоки питания с пассивным охлаждением редки и очень дороги. Наиболее оптимальны блоки с полупассивным охлаждением. Во-первых, это положительно сказывается на ресурсе вентилятора. Во-вторых, даже в корпусе с противопылевыми фильтрами пыль есть, а при работе вентилятор засасывает ее внутрь блока, где она оседает на радиаторах и деталях, ухудшая охлаждение.
Вентиляторы в основном встречаются типоразмера 120 или 140 мм. Маленькие, размером 80 мм, которые встраивались в переднюю или заднюю стенку, ушли в прошлое, сейчас встретить такой блок в продаже трудно.
Также в вентиляторы в последнее время стали встраивать подсветку.
Корректор мощности
Для компенсации реактивной мощности в БП существуют две схемы: активная (APFC) и пассивная.
Пассивная это банальный дроссель огромных размеров. Таким образом часто дорабатывались БП, в которых корректор изначально не был предусмотрен.
Активная более сложна в реализации, но более эффективна. Во всех современных блоках используется только APFC.
С другой стороны, блоки с APFC могут конфликтовать с UPS. Поэтому к подбору источника бесперебойного питания надо подходить с особой тщательностью.
Сертификат 80 Plus
Данный сертификат характеризует энергоэффективность блоков питания или его КПД (отношение полезной энергии к общему количеству потраченной).
Далее в порядке возрастания идут Bronze, Silver, Gold, Platinum, Titanium.
Список сертифицированных блоков можно найти тут.
Сертификация блока процедура недешевая, поэтому для бюджетных моделей частенько ей пренебрегают. Иногда даже придумывают собственные значки, внешне похожие на официальные.
Отсутствие какого-либо сертификата говорит либо о низком КПД (то есть, безнадежно устаревшей схемотехнике блока), либо о бережливости производителя. Вы четко должны понимать, что в таком случае покупаете продукт на котором жестко экономили, и ладно, если только на сертификации.
Поэтому, лучше обращать внимание на БП, имеющие хотя бы бронзовый сертификат.
Итак, как выбрать БП?
Первый шаг
Определиться с мощностью.
Сделать это можно несколькими путями:
1) Посчитать мощность с помощью онлайн-калькуляторов (раз, два). Они почти не врут, разве что имеют тенденцию к незначительному ее завышению, что некритично.
2) Посчитать мощность самому, сложив заявленные производителем характеристики комплектующих. Не самый верный путь, ибо производители вместо реальной потребляемой мощности часто указывают TDP (требования по теплоотводу), а они могут сильно отличаться от реальности.
Брать БП с избыточной мощностью незачем. Это просто лишняя трата денег.
Второй шаг
Определиться с количеством разъемов и необходимой длиной кабелей.
Третий шаг.
Определиться с количеством денег, которые вы готовы потратить на покупку данного устройства.
Допустим, у нас уже есть блок питания, мощностью 500-600 Вт, с наличием любого сертификата, начиная от 80 Plus Bronze (как сказано выше, лучше выбирать из блоков с наличием сертификата 80 Plus).
Рассмотрите дополнительные параметры, такие как подсветка (бывает одноцветной, или многоцветной с различными эффектами), система охлаждения (активная, полупассивная, пассивная).
Обращайте внимание на срок гарантийного обслуживания. Гарантия в 7-12 лет чаще всего дается для очень качественно сделанных БП.
Вы уже имеете ценовую вилку для ориентировки, и нам осталось только поставить ограничение в ценах и выбрать из оставшихся одного единственного.
Напоследок ответы на частые вопросы пользователей при выборе БП.
Как поменять вентилятор в БП?
Что делать, если БП свистит?
Существует такое явление, как магнитострикция. Суть его в том, что при изменении магнитного поля размеры тела тоже изменяются. В электронике этому наиболее подвержены дроссели и трансформаторы. При протекании тока сердечник в таких конструкциях вибрирует с частотой, кратной частоте тока, и издает звуки. Обычно преобразователи в БП специально рассчитывают на частоты выше верхнего диапазона слышимости. Но частенько бывает, что из-за некачественных деталей или брака при сборке такой свист появляется.
Солидные производители при подтверждении данной проблемы в СЦ обычно меняют такие блоки по гарантии. Хотя, чаще всего такой блок может без проблем работать со свистом несколько лет без всякого ущерба для комплектующих. Добиться его замены от малоизвестного производителя может быть затруднительно, ибо подобный шум никак не регламентируется, а выходные параметры напряжений у блока, как сказано выше, могут быть в рамках стандарта.
Что такое АТХ 12V, EPS 12V и прочие стандарты?
С ростом мощности процессоров понадобилось усилить их линию питания, поэтому многие материнские платы получили 8-контактный разъем питания из серверного стандарта EPS 12V. Следовательно, поддержка EPS 12V означает лишь наличие 8-контактного разъема питания процессора.
Нужно ли гнаться за последней версией стандарта?
Нет. Изменения в стандартах в последние несколько лет незначительны и никак на потребительских свойствах не сказываются.
Имеет ли смысл покупать блоки питания от фирмы, которая сама производит и разрабатывает их?
Есть несколько производителей блоков, самые известные из них: CWT, Seasonic, НЕС, Enermax, FSP, InWin, Delta Electronics. На самом деле, неплохих производителей гораздо больше.
Так стоит ли гнаться за блоками именно этих производителей и под родной маркировкой? Нет.:
1) БП с другой наклейкой на корпусе может стоить существенно меньше при том же качестве.
2) Некоторые фирмы выпускают измененные (и часто в лучшую сторону) модели ОЕМ-производителей.
Надо ли обращать внимание на наличие защит в БП?
На их заявленное производителем наличие обращать внимание не стоит.
Чаще всего реализована с помощью датчика, который установлен в одном, самом удобном с точки проектировщика, месте.
Но дело в том, что конструкция блока питания предполагает множество греющихся элементов, которые рассредоточены по всей плате. Таким образом, при локальном перегреве в точке, где нет датчика, блок сгорит.
Обычный пользователь думает, что если выходные напряжения выйдут за пределы стандарта, то блок питания выключится, защищая подключенное оборудование. В реальности чаще всего за это отвечает микросхема супервизора (английское слово supervisor правильнее произносить как супервайзер, но у нас прижилось упрощенное произношение в отношении подобных микросхем).
Это, скорее, защита самого БП при возникновении неисправностей от его полного выхода из строя, а никак не защита ваших комплектующих от повышенного напряжения. Аналогично с пониженным.
Несмотря на наличие кучи надписей на коробке о защитах, есть ли они реально и насколько грамотно реализованы, никто вам не скажет.
У какой фирмы самые лучшие блоки питания?
Нет такой фирмы. У каждой есть как удачные модели, так и неудачные, так что ориентироваться на конкретного производителя не стоит.
Текст обновлен автором Sancheas