Fabs python что это
Модуль числа в Python — функции abs() и math.fabs()
З апускаю китайскую реплику «ТАРДИС», и вот мы в пятом классе. На доске нарисована числовая ось, а на ней выделен отрезок. Его начало в точке 4, а конец — в 8. Учительница говорит, что длину отрезка можно найти путём вычитания координаты начала отрезка из координаты его конца. Вычитаем, получаем 4, и радуемся — мы нашли длину. Ура! 🎉
Перемещаемся на год вперёд, и там происходит странное: учительница выделяет мелом другой отрезок, но делает это в каком-то неправильном месте — левее точки с цифрой «0». Теперь перед нами старая задача, но с новыми числами и даже буквами: A, B, минус 4 и минус 8. Мы начинаем искать длину отрезка AB = [-4;-8]:
Переводим непонимающий взгляд с получившейся отрицательной длины на довольную улыбающуюся учительницу, а затем на доску. Там наверху, рядом с сегодняшней датой, написана тема урока: «Модуль числа».
Что такое модуль числа
Модуль числа называют абсолютной величиной.
Для вещественных чисел модуль определяется так:
Т.е. в любом случае, модуль — число большее или равное 0. Поэтому отрицательная длина в примере хитрой учительницы должна была быть взята по модулю:
Тогда дети бы увидели, что геометрический смысл модуля — есть расстояние. Это справедливо и для комплексных чисел, однако формальное определение для них отличается от вещественного:
, где z — комплексное число: z = x + i y.
В то время как math.fabs() может оперировать только вещественными аргументами, abs() отлично справляется и с комплексными. Для начала покажем, что abs в python работает строго в соответствии с математическим определением.
# для вещественных чисел print(abs(-1)) print(abs(0)) print(abs(1)) > 1 > 0 > 1
Как видно, с вещественными числами всё в порядке. Перейдём к комплексным.
# для комплексных чисел print(complex(-3, 4)) print(abs(complex(-3, 4))) > (-3+4j) > 5.0
Если вспомнить, что комплексное число выглядит так: z = x + i y, а его модуль вычисляется по формуле:
Можно заметить, что abs() возвращает значения разных типов. Это зависит от типа аргумента:
print(type(abs(1))) > print(type(abs(1.0))) > print(type(abs(complex(1.0, 1.0))))
print(type(math.fabs(complex(2,3)))) > TypeError: can’t convert complex to float
Для начала работы с fabs() необходимо импортировать модуль math с помощью следующей инструкции:
Мы уже выяснили, что fabs() не работает с комплексными числами, поэтому проверим работу функции на вещественных:
print(math.fabs(-10)) print(math.fabs(0)) print(math.fabs(10)) > 10.0 > 0.0 > 10.0
Модуль числа в Python
Очень часто возникает необходимость вычисления модуля числа в Python. Рассмотрим, что такое модуль числа, какие есть способы его вычисления. Так же отдельно коснемся комплексных чисел.
Модуль числа
Часто в программировании требуется вычислить абсолютное значение числа. Иначе говоря, отбросить знак.
При вычислении модуля возможны 3 ситуации:
Но это все справедливо только для действительных чисел. Чему же тогда будет равен модуль комплексных?
Комплексное число состоит из действительной составляющей и мнимой. Геометрически это можно представить как 2 ортогональные оси: действительную и мнимую. Отмечаем на координатных осях требуемую точку. Модулем будет длина отрезка, проведенного из начала координат в эту точку.
Вычисление
Вычислять модуль можно следующими способами:
Все эти функции работают как в Python 2, так и в Python 3.
Для вычисления в Python модуля числа используется функция abs. Результат функции того же типа, которого был аргумент.
Свое решение
Если по каким то причинам нет возможности или желания использовать стандартные функции, то можно написать свое решение.
Например, можно вычислить воспользоваться тернарным оператором.
На основе такого условия сделаем свою функцию.
Модуль комплексного числа
Мы разобрались как происходит вычисление с действительными числами. Теперь посмотрим, как в языке программирования Python можно получить модуль комплексного.
Функцией fabs мы не сможем воспользоваться. Если попытаемся это сделать, то получим ошибку приведения комплексного числа к действительному (TypeError).
А вот с помощью abs преобразование удается.
Или же напишем свою функцию:
Результаты получились одинаковыми. Но нам все равно пришлось подключить библиотеку math для вычисления квадратного корня.
Математический модуль math в Python – список функций
Математический модуль math в Python представлен наиболее известными математическими функциями, которые включают в себя тригонометрические функции, функции представления, логарифмические функции и т. д. Кроме того, он также определяет две математические константы, т. е. pie и число Эйлера.
Pie(n): это хорошо известная математическая константа, определяемая как отношение длины окружности к диаметру круга. Его значение составляет 3,141592653589793.
Число Эйлера(е): определяется как основание натурального логарифма, и его значение составляет 2,718281828459045.
Ниже приведены различные математические модули:
math.log()
Этот метод возвращает натуральный логарифм заданного числа. Он рассчитывается по базе e.
math.log10()
Этот метод возвращает базовый логарифм 10 заданного числа и называется стандартным логарифмом.
math.exp()
Этот метод возвращает число с плавающей запятой после увеличения e до заданного числа.
math.pow(x,y)
Этот метод возвращает степень x, соответствующую значению y. Если значение x отрицательно или y не является целым числом, возникает ошибка ValueError.
math.floor(x)
Этот метод возвращает минимальное значение x. Он возвращает значение x, меньшее или равное.
math.ceil(x)
Метод возвращает значение ceil x. Возвращает значение, большее или равное x.
math.fabs(x)
Метод возвращает абсолютное значение x.
math.factorial()
Возвращает факториал заданного числа x. Если x не является целым, возникает ошибка ValueError.
math.modf(x)
Возвращает дробную и целую части x. Он имеет знак x – float.
Python предоставляет несколько математических модулей, которые могут выполнять сложную задачу в одной строке кода.
Math — математические функции в Python
Что такое модуль?
В C и C++ есть заголовочные файлы, в которых хранятся функции, переменные классов и так далее. При включении заголовочных файлов в код появляется возможность не писать лишние строки и не использовать одинаковые функции по несколько раз. Аналогично в Python для этого есть модули, которые включают функции, классы, переменные и скомпилированный код. Модуль содержит группу связанных функций, классов и переменных.
Функции представления чисел
ceil() и floor() — целая часть числа
Сeil() и floor() — функции общего назначения. Функция ceil округляет число до ближайшего целого в большую сторону. Функция floor убирает цифры десятичных знаков. Обе принимают десятичное число в качестве аргумента и возвращают целое число.
Пример:
Функция fabs() — абсолютное значение
Пример:
factorial() — функция факториала
Эта функция принимает положительное целое число и выводит его факториал.
Пример:
Примечание: при попытке использовать отрицательное число, возвращается ошибка значения ( Value Error ).
Пример:
Функция fmod() — остаток от деления
Пример:
Функция frexp()
Пример:
Функция fsum() — точная сумма float
Вычисляет точную сумму значений с плавающей точкой в итерируемом объекте и сумму списка или диапазона данных.
Пример:
Функции возведения в степень и логарифма
Функция exp()
Пример:
Функция expm1()
Пример:
Функция log() — логарифм числа
Функция log(x[,base]) находит логарифм числа x по основанию e (по умолчанию). base — параметр опциональный. Если нужно вычислить логарифм с определенным основанием, его нужно указать.
Пример:
Функция log1p()
Пример:
Функция log10()
Вычисляет логарифм по основанию 10.
Пример:
Функция pow() — степень числа
Пример:
Функция sqrt() — квадратный корень числа
Эта функция используется для нахождения квадратного корня числа. Она принимает число в качестве аргумента и находит его квадратный корень.
Пример:
Тригонометрические функции
В Python есть следующие тригонометрические функции.
Функция | Значение |
---|---|
sin | принимает радиан и возвращает его синус |
cos | принимает радиан и возвращает его косинус |
tan | принимает радиан и возвращает его тангенс |
asin | принимает один параметр и возвращает арксинус (обратный синус) |
acos | принимает один параметр и возвращает арккосинус (обратный косинус) |
atan | принимает один параметр и возвращает арктангенс (обратный тангенс) |
sinh | принимает один параметр и возвращает гиперболический синус |
cosh | принимает один параметр и возвращает гиперболический косинус |
tanh | принимает один параметр и возвращает гиперболический тангенс |
asinh | принимает один параметр и возвращает обратный гиперболический синус |
acosh | принимает один параметр и возвращает обратный гиперболический косинус |
atanh | принимает один параметр и возвращает обратный гиперболический тангенс |
Пример:
Функция преобразования углов
Эти функции преобразуют угол. В математике углы можно записывать двумя способами: угол и радиан. Есть две функции в Python, которые конвертируют градусы в радиан и обратно.
Пример:
Математические константы
Модуль Math в Python
P ython библиотека math содержит наиболее применяемые математические функции и константы. Все вычисления происходят на множестве вещественных чисел.
Синтаксис и подключение
Чтобы подключить модуль, необходимо в начале программы прописать следующую инструкцию:
Теперь с помощью точечной нотации можно обращаться к константам и вызывать функции этой библиотеки. Например, так:
Константы модуля Math
math.pi Представление математической константы π = 3.141592…. «Пи» — это отношение длины окружности к её диаметру.
math.tau Число τ — это отношение длины окружности к её радиусу. Т.е
math.inf Положительная бесконечность.
math.nan NaN означает — «не число».
Список функций
Теоретико-числовые функции и функции представления
math.ceil() Функция округляет аргумент до большего целого числа.
Решим задачу : На столе лежат шесть рубинов. Сколько существует способов выбрать два из них?
💭 Можете подставить числа в формулу, и самостоятельно проверить правильность решения.
math.copysign() Функция принимает два аргумента. Возвращает первый аргумент, но со знаком второго.
print(math.copysign(-6, 2)) > 6.0
math.fabs() Функция возвращает абсолютное значение аргумента:
math.factorial() Вычисление факториала. Входящее значение должно быть целочисленным и неотрицательным.
print(math.fmod(75, 4)) > 3.0
math.frexp(num) Возвращает кортеж из мантиссы и экспоненты аргумента. Формула:
, где M — мантисса, E — экспонента.
print(math.frexp(10)) > (0.625, 4) # проверим print(pow(2, 4) * 0.625) > 10.0
math.fsum() Вычисляет сумму элементов итерируемого объекта. Например, вот так она работает для списка:
summable_list = [1, 2, 3, 4, 5] print(math.fsum(summable_list)) > 15.0
a = 5 b = 15 print(math.gcd(a, b)) > 5
norm = 3 inf = float(‘inf’) print(math.isfinite(norm)) > True print(math.isfinite(inf)) > False
not_inf = 42 inf = math.inf print(math.isinf(not_inf)) > False print(math.isinf(inf)) > True
not_nan = 0 nan = math.nan print(math.isnan(not_nan)) > False print(math.isnan(nan)) > True
math.isqrt() Возвращает целочисленный квадратный корень аргумента, округлённый вниз.
math.ldexp(x, i) Функция возвращает значение по формуле:
возвращаемое значение = x * (2 ** i) print(math.ldexp(3, 2)) > 12.0
math.modf() Результат работы modf() — это кортеж из двух значений:
Задача : Посчитать количество вариантов распределения трёх билетов на концерт Стаса Михайлова для пяти фанатов.
print(math.perm(5, 3)) > 60
Целых 60 способов! Главное — не запутаться в них, и не пропустить концерт любимого исполнителя!
math.prod() Принимает итерируемый объект. Возвращает произведение элементов.
multiple_list = [2, 3, 4] print(math.prod(multiple_list)) > 24
math.remainder(m, n) Возвращает результат по формуле:
Результат = m – x * n,
где x — ближайшее целое к выражению m/n число.
math.trunc() trunc() вернёт вам целую часть переданного в неё аргумента.
Степенные и логарифмические функции
1 аргумент: вернёт значение натурального логарифма (основание e ):
2 аргумента: вернёт значение логарифма по основанию, заданному во втором аргументе:
print(math.log(16, 4)) > 2.0
math.log1p() Это натуральный логарифм от аргумента (1 + x) :
print(math.log(5) == math.log1p(4)) > True
math.pow(a, b) Функция выполняет возведение числа a в степень b и возвращает затем вещественный результат.
math.sqrt() Возврат квадратного корня из аргумента
Тригонометрические функции
math.acos() Функция возвращает арккосинус в радианах:
math.asin() Возврат арксинуса (угол в радианах):
# π/2 print(math.asin(1)) > 1.5707963267948966
# π/4 print(math.atan(1)) > 0.7853981633974483
math.cos() Косинус угла, который следует указывать в радианах:
print(math.hypot(3, 4)) > 5.0
math.sin() Функция вернёт синус угла. Угол следует задавать в радианах:
math.tan() Тангенс угла. Аргумент указываем в радианах.
Угловые преобразования
math.degrees() Функция переводит радианное значение угла в градусы.
math.radians() Наоборот: из градусов — в радианы.
# функция отрабатывает прямо, как по табличке синусов =) print(math.radians(30)) > 0.5235987755982988 print(math.pi / 6) > 0.5235987755982988
Гиперболические функции
Гиперболические функции являются аналогами тригонометрических и тесно с ними связаны. Но тригонометрические функции основаны на окружностях, а гиперболические, соответственно, на гиперболах.
Для Python все они принимают один аргумент — точку, в которой вычисляется значение функции.