Fff печать что это
Как устроен FFF(FDM) 3d принтер? Часть 1.
Тема 3d печати становится все более популярной, но многие люди все же не понимают сам принцип действия этих чудо-машин. Это и не странно, так как на рынке, в текущий момент предоставлено довольно большое количество устройств, которые различаются своими «внутренностями», но объединяет их одно – возможность создавать трёхмерные изделия из самых различных материалов.
Первые 3d принтеры были изготовлены ещё в 80-х годах прошлого столетия, а в 90-х основатель компании Stratasys, Скотт Крамп, разработал технологию печатных оттисков, которая в будущем получила название FFF, или же метод наплавления. Чуть поздней была основана компании 3D Systems, к сегменту производства 3d принтеров присоединилась Solidscape, которая ранее занималась созданием двухмерных принтеров. Первые устройства были довольно громоздкими, собственно, как и все технологии того времени, и стоили огромных денег, так что позволить себе такое устройство в своём доме, обычному человеку было просто нереально.
Сейчас же ситуация кардинально изменилась, а 3d принтеры становятся все более похожими на своих двухмерных собратьев. Возможно, в скором будущем именно они станут стандартом как для домашнего, так и промышленного использования.
Существует довольно большое разнообразие 3d принтеров, каждый из которых работает по определённой технологии. Где-то задействуются физические факторы и принципы, где-то химические. Назвать какую-то конкретную технологию лучшей, чем другие пока что нельзя, потому что каждый вид имеет свои преимущества и недостатки, а до стандартизации устройств ещё очень далеко, так как каждый день открываются новые возможности и потенциал технологии ещё не раскрыт.
В этой статье мы рассмотрим принцип действия 3d принтеров, которые работают по технологии FFF – моделирование методом наплавления. Существует ещё одно название этой технологии – FDM, которое несёт тот же смысл. Различие между этими двумя понятиями состоит лишь в том, что технология FDM (FusedDepositionModeling) является торговой маркой одного из гигантов производства 3D-принтеров, а термин FFF был придуман энтузиастами, для того, чтобы обойти различные юридические ограничения.
Что такое FFF-технология и как она работает?
Сам термин FFF – это набор слов, описывающий процесс работы с определённым материалом, который используется в соответствующих принтерах. В 3d принтерах, работающих по такой технологии в качестве наполнителя, чаще всего используется специальный термопластик, который во время нагревания приобретает полужидкое состояние, а после охлаждения – затвердевает.
Термопластик подаётся при помощи экструдера (механизма отвечающего за подачу материала) на печатающую головку, которая слой за слоем создаёт изделие.
Большинство нестандартных, например, пищевых принтеров работает именно по принципу FFF технологии, но с небольшими модификациями. Из тех же устройств, которые созданы для работы с пищей, убирается нагревающая часть и устанавливается дополнительный контейнер, хранящий съедобный наполнитель.
Работа в трёх измерениях – принцип работы направляющих
Самая сложная часть 3d принтеров – это подвижные элементы. Недостаточно просто установить несколько шаговых двигателей, подключить их к питанию и заставить двигать экструдер. Нужно научить их правильно работать и точно выставлять головку, которая отвечает за подачу материала.
Для того чтобы можно было создавать полноценные, объёмные объекты, принтер должен работать по трём направляющим: высота, ширина и длина. То есть механизмы должны организовать печать так, чтобы объект, во время создания мог быть обработан по осям XYZ. Такой эффект может достигаться при помощи движений печатающей головки, платформы, либо комбинировании обоих этих способов. В математике, движение в трех направлениях называется «декартовой системы координат». Но не переживайте – мы не будем углубляться в математические теории.
Если вам ещё не стало понятно, пожалуй, можно провести аналогию с обычным 2D-принтером. Эти устройства создают изображения на плоскостях X и Y. Как только вы отправляете документ на печать, компьютер просчитывает все необходимые координаты и передаёт их принтеру. Последний, в свою очередь, начинает передвигать печатающую головку влево — вправо, а колесики внутри перемещают лист на новую строку.
Каждый 3d принтер построен аналогичным способом, а все три оси являются линейными. Они расположены под прямым углом друг к другу и не меняют своего положения в процессе печати. Для движений вдоль осей используются зубчатые ремни, шкивы, стержни, моторчики и др.
Хотя двигатели имеют относительно небольшие размеры, они обладают достаточной мощностью, чтобы направлять головку или печатную платформу, с точностью до миллиметра. В 3d принтерах используются довольно дорогостоящие двигатели, так как механизмы низкой ценовой категории не обеспечат необходимую точность. К тому же дешёвые двигатели издают достаточно большое количество шума, даже несмотря на то, что они постоянно совершенствуются.
Экструдер
Само понятие «Экструдер» применяется не только в проектировании и создании 3d принтеров, оно используется для того, чтобы обозначить то устройство, которое отвечает за подачу разогретого материала, в случае 3d принтеров – это раскалённая нить. Экструдеры – это та часть 3d принтеров, которая постоянно модифицируется и дополняется, для того, чтобы разработчики смогли использовать самые различные материалы. Некоторые подающие головки интегрируются в устройство накала нити, другие устанавливаются отдельно и соединяются при помощи так называемых шлейфов.
Если говорить о терминологии, то с определением некоторых частей 3d принтеров возникают трудности, так как сама технология ещё относительно молода и не все называется стандартными именами. Главное запомнить то, что экструдеры подают материал при помощи выдавливания (методом экструдирования). Сам материал укладывается слоями до тех пор, пока изделие не будет полностью готово, но об этом немного позже.
Каждый из видов расположения экструдеров, независимо от того, интегрированная ли это система или же удалённая, имеет свои преимущества и недостатки.
Интегрированная система не нуждается в создании сложной системы подачи материала на саму головку, поэтому во время печати редко возникают какие-либо проблемы, но в отличие от удалённых – цельные механизмы тяжелее в весе и гораздо медленней в работе. Эти характеристики заметно снижают саму скорость печати устройств, но часть времени компенсируется простотой замены пластиковой нити.
В удалённых же системах для подачи материала на печатающую головку, используются специальные полые трубки (Боуден-кабель). Они обеспечивают не только постоянную подачу нити на экструдер, но и могут работать в обратном направлении, если это необходимо (режим втягивания). Удалённая система расположения экструдера приводится в действие при помощи так называемых тросов.
Самое главное преимущество удалённого расположения экструдера – небольшой вес, который позволяет добиться высокой скорости печати. Один из самых быстрых принтеров – Ultimaker, как раз-таки использует именно такую систему расположения экструдера.
Основная проблема полых трубок – это большое количество трения, возникающего внутри системы подачи материала, в результате чего могут возникнуть проблемы, связанные как с подачей, так и с порчей самого термопластика (или других используемых материалов).
Ещё один недостаток системы – сложности, которые могут возникать в процессе замены принтера. Поэтому перед тем как удалить нить, необходимо включить нагрев самой печатающей головки. Материал, после прекращения работы, остывает и затвердевает, что вызывает засорение. Ошибка многих начинающих пользователей 3d принтеров заключается в том, что они пытаются достать остатки материала силой, но это категорически не рекомендуется, так как можно попросту повредить печатающую головку и всю систему.
Системы подачи материала постоянно совершенствуются, а энтузиасты 3d сообществ, постоянно создают все новые концепции построения этой системы.
Продолжение статьи об устройстве 3d принтера читайте во второй и третьей частях статьи.
3D-печать, битва технологий, FDM vs SLA
Для начала немного истории. Основоположниками современной настольной 3D-печати принято считать две американские компании – MakerBot (основана в 2009 году) и Formlabs (основана в 2011 году). Каждая из этих компаний пошла своим путем, и результаты по истечении 10 лет у них разные. Первой на Олимп поднялась MakerBot, выпустив по-настоящему массовый, а главное доступный, с точки зрения простоты использования, принтер MakerBot Replicator 2. Его продажи росли бешеными темпами, и в 2013 году на пике успеха компанию решили продать за фантастические по тем временам деньги в 400 млн. долларов. Покупателем выступил ветеран 3D-печати, компания Stratasys, где молодой и энергичный стартап был скоро «похоронен» в корпоративных интригах. Другим путем пошла Formlabs. Компанию решили развивать, последовательно привлекая инвестиции. В итоге ее капитализация достигла 2 млрд. долларов, что существенно превысило стоимость Stratasys, вместе с купленным MakerBot. Обо всем этом в 2014 году Netflix снял очень интересный документальный фильм, который называется Print the Legend. Рекомендую всем, кому интересны темы предпринимательства, стартапов и технологий, его посмотреть.
FDM/FFF технологии
Плюсы
Это наилучший способ для быстрого прототипирования. Десятки прототипов своего будущего устройства вы можете напечатать разными видами пластика, разными цветами. Вы также можете создавать функциональные прототипы, свойства которых будут близки к свойствам конечного изделия. Себестоимость этих прототипов может быть очень низкой по сравнению с классическими технологиями фрезерования или использования пресс-форм. Вы можете быстро создавать модели сложных геометрических форм, используя растворимые субстанции в моделях принтеров с двумя экструдерами. Их широкий выбор позволит вам найти материал, изделия из которого после печати будут обладать необходимыми свойствами: повышенной термостойкостью, устойчивостью к низким температурам, масло-, бензо-, износо-, ударостойкостью.
На рынке доступны сотни материалов для 3D-печати, за 10 лет накоплена огромная база знаний по ее применению для различных задач. Вы также можете печатать модели больших размеров, так как сейчас доступны модели принтеров с областью построения 1 метр по длине, ширине и высоте. Еще одним плюсом является то, что изделия после печати не требуют постобработки, они сразу готовы к использованию. Но если вы хотите улучшить их внешний вид, вы легко сможете их шлифовать, грунтовать, красить, склеивать между собой, сверлить в них дырки, делать резьбу и многое другое. Кроме прототипирования FDM принтеры чаще всего используют для мелкосерийного производства небольших элементов, ради производства которых нет смысла заказывать пресс-форму, так как общий тираж не оправдает затрат, а себестоимость при этом будет очень низкой.
Еще одним популярным применением FDM 3D-печати является макетирование, создание уникальных архитектурных, выставочных, демонстрационных или сувенирных макетов. Сейчас рынок предлагает большое количество декоративных материалов, не имеющих специальных свойств, но которые выглядят как дерево, сталь, бронза, мрамор, серебро или золото. Это позволяет создавать макеты без, либо с минимальной постобработкой, что существенно экономит затраты и время при их создании. Ну и конечно, не стоит забывать о самом популярном социальном сегменте таких принтеров – домашних пользователей, которые используют их как хобби, печатают детям фигурки, вазы для цветов, крючки, полочки и другие полезные или просто красивые модели. Себестоимость таких изделий низкая, и даже при среднем объеме печати покупка принтера окупается очень быстро. При этом вам не надо ничего моделировать, все модели доступны для бесплатного скачивания либо за символическую плату.
Минусы
Еще одним минусом является финишное качество моделей. Даже при самой низкой толщине слоя вы будете видеть слои на модели. И это не позволяет использовать 3D-печатные модели как конечный продукт. Вы вряд ли купите неприятный на ощупь чехол для мобильника и не захотите давать ребенку игрушку, которую не особо приятно держать в руках.
Еще один нюанс этой технологии – слабая адаптация оборудования к новым материалам. И если таковой появляется на рынке и вызывает ваш интерес, то с большой долей вероятности вам придется покупать и новый принтер. Этот минус не был таким явным до последнего времени, но именно развитие фотополимерной 3D-печати в последние году высветило и его.
Подводя итог анализу плюсов и минусов технологии FDM стоит отметить главное: она находится в застое и после прорыва, который был 10 лет назад, производителям не удалось существенно продвинуться. Удалось лишь снизить стоимость самих принтеров, что конечно же повлияло на их доступность и распространенность. Конечно, большинство моделей сейчас оснащено цветными дисплеями, Wi-Fi, встроенными веб-камерами, датчиками окончания нити, возможностью продолжить печать после отключения электричества, системами автокалибровки площадки и т.д. Все это упрощает работу с устройством, но, увы, не сделает FDM 3D-принтер производственным оборудованием.
Фотополимерная 3D-печать
А теперь давайте также рассмотрим плюсы и минусы этой технологии. Со временем они претерпели серьезные изменения.
Плюсы
В реальности так и происходит: появляются новые смолы с интересными свойствами и улучшенными формулами, и пользователи активно начинают их применять для своих задач. Производители делают их под конкретную, узкую задачу и таким образом гарантируют покупателю результат при правильном ее использовании. Примером тут могут служить смолы для хирургических шаблонов, временных коронок, элайнеров, ювелирных выжигаемых моделей и многие другие.
Минусы
Еще к одному минусу можно отнести стоимость смолы. С ростом объемов производства она дешевеет, и потребитель вправе ожидать дальнейшего снижения ее стоимости. Но сейчас она в 3 раза дороже пластиковой нити и это, безусловно, сказывается на себестоимости изделий. Также к минусам можно отнести недостаточно широкий ассортимент смол с различными важными свойствами, например мягкими (типа резины), жесткими, износостойкими, прочными и т.д. Рынок постепенно выравнивает предложение, но в этом направлении многое еще надо сделать.
Процесс фотополимерной печати может быть очень прост для типовых задач, особенно в сфере стоматологии, где опыт использования уже очень большой, но при решении нестандартных задач, в частности с допусками по точности моделей есть риск столкнуться с большим количеством подводных камней и ограничений.
Какая технология победит
Мы рассмотрели основные достоинства и недостатки FDM и SLA технологий, а теперь вернёмся к теме этой статьи, а именно конкуренции между ними. Почему почти десять лет они существовали параллельно, а теперь мы вдруг начали говорить о наметившемся соперничестве? К этому привело активное развитие SLA 3D-печати в последние 2 года, которое позволило создать принтеры достаточно дешевые, быстрые и большие. Изначально фотополимерная печать развивалась в парадигме решения задач конкретных индустрий, в первую очередь стоматологии и ювелирного производства. Это ставило перед производителями принтеров конкретную задачу, которую они должны были решить, чтобы быть успешными на рынке. В процессе поиска решения они смогли создать оборудование, которое способно решать гораздо более широкий круг задач: печатать быстрее, качественнее и создавать большее количество моделей за единицу времени, чем конкурирующие с ними FDM принтеры. Ну а для примера, давайте сравним флагманы от таких лидеров рынка, как Phrozen и Raise3D, чтобы сделать всю эту теорию наглядной.
FDM технология 3D печати
Аналогом FDM можно назвать технологию MJM. Только в MJM используется воск или фотополимер. На печатающей головке расположено множество небольших сопел (от 96 до 448) через которые подается расплавленный воск, либо капельки фотополимера которые сразу засвечиваются лампой.
Первым материалом для 3D печати была пластиковая нить для сварки с диаметром 3мм, поэтому долгое время этот размер был стандартом для 3D печати.
История
Метод был изобретен С. Скоттом Крампом в конце 1980 года. Патент получен в 1988 год. А уже в 1990 компания Stratasys появляется на рынке с первым промышленным 3D принтером работающим по технологии FDM.
Скотт Крамп один из основателей компании Stratasys.
Первая версия RepRap 3D принтера.
Целью проекта было создания самокопирующегося 3D-принтера. В качестве рамы и направляющих использовались валы. Почти все детали соединялись печатными деталями. Экструдер и стол приводились в движение шаговыми двигателями. Исходный код был открытым. Конечно визуально он был похож на самоделку “из подручных материалов”, но работал. В принтере используется около 50% печатных деталей.
По мере развития RepRap стали развиваться проекты на базе OpenSource (открытого исходного кода). Самым ярким представителем движения OpenSource стал MakerBot. Помимо развития своего 3D принтера MakerBot активно развивают сайт Thingiverse. На Thingiverse можно найти огромное количество бесплатных 3D моделей готовых к печати.
Основатели MakerBot Зак Смит и Бре Петтис с финальными прототипами MakerBot Cupcake.
В сеть были выложены все чертежи и наработки. Это дало возможность любому желающему закупить все нужные компоненты и электронику, заказать в любом месте резку корпуса и некоторых узлов и собрать свой принтер. А уже после сборки можно было на этом же принтере напечатать апгрейды и заменить фанерные детали пластиковыми.
Достаточно быстро у Ultimaker появилось большое и дружное сообщество. В сети было выложено множество бесплатных 3D моделей различных узлов Ultimaker Original. Появилось множество апгрейдов, убирались многие неприятные “болячки” конструкции.
Фанерный Ultimaker Original
Помимо 3D принтеров Ultimaker, на базе Replicator-G, разработали свой слайсер CURA. Благодаря своей универсальности и доступности CURA стала фаворитом среди слайсеров у 3D мейкеров. Помимо принтеров Ultimaker туда было добавлена куча готовых профилей для других 3D- принтеров. Можно легко настроить CURA для самосборного принтера.
Плюсы и минусы FDM
Большое разнообразие моделей.
Можно легко подобрать принтер под конкретную задачу. Например Flashforge Adventurer 3, благодаря закрытому корпусу и отсутствию нагревательного стола, станет отличным подарком для ребенка. Anycubic Mega подойдет в качестве домашнего помощника для человека любящего апгрейды и эксперименты. А Raise3D Pro2 подойдет для производственных задач.
3D-принтеры с разной кинематикой: сравнение, плюсы и минусы
Введение
Существует множество технологий печати для 3D-принтеров: цифровая светодиодная проекция (DLP), лазерная стереолитография (SLA), селективное лазерное спекание (SLS), тепловое спекание (SHS) и т.д. В этой статье мы рассказываем о самых популярных на данный момент 3D-принтерах FFF.
FFF-принтеры (Fused Filament Fabrication, «производство методом наплавления нитей»), также известны как принтеры FDM (от Fused Deposition Modelling, «моделирование методом наплавления»). Представляют собой устройства для создания трехмерных объектов, как понятно из названия, путем послойного нанесения на рабочую поверхность расплавленного термопластика. FFF-принтеры используются как для коммерческой, так и для домашней печати моделей.
Виды кинематики 3D-принтеров
Каждый 3D-принтер имеет собственную кинематическую схему, согласно которой приводятся в движение механические части устройства: платформы и экструдеры. Ниже мы рассмотрим четыре типа FDM 3D-принтера: картезианский, дельта, полярный и роботизированный манипулятор.
Картезианские 3D-принтеры
На рынке 3D-принтеров FFF / FDM самыми распространенными являются приборы с картезианской кинематикой. Основанная на декартовой системе координат, эта технология работает на основе трех осей – X, Y, Z. По одной или нескольким из них осуществляется движение механических частей прибора, т.е., заданные по осям координаты реализуют схему перемещения и положения печатающей головки относительно платформы.
Количество вариантов перемещения печатной головы и платформы ограничено:
Вторая схема является самой распространенной — когда платформа для печати перемещается по оси Z (вверх и вниз), а экструдер работает в двух измерениях, по плоскостям XY.
Преимущества картезианской схемы
Из всех видов кинематических схем FDM 3D-принтеров, картезианские показывают практически идеальную стабильность результатов. Расходные материалы для FDM имеют низкую стоимость и поставляются в широчайшем ассортименте цветов и материалов. Часто картезианские 3D-принтеры применяются в коммерческих целях – для печати на заказ и на продажу бытовых объектов, сувенирной продукции и украшений.
Картезианские 3D-принтеры уже давно и прочно обосновались в жизни любителей и профессионалов 3D-печати. Поэтому в сети множество тематических сообществ с исчерпывающей информацией об устройстве принтеров, работе с ними и создании моделей, от простых до сложных.
Модели, построенные на декартовой системе координат, можно разделять на составные части для печати, что позволяет создавать 3D-печатные объекты любого размера, не ограниченные объемом принтера. Многие 3D-принтеры поставляются в виде набора для сборки. Для новичков и тех, кто не хочет разбираться в устройстве принтера, производители поставляют готовые устройства. С ними печатать модели можно практически после распаковки.
Разновидности картезианской кинематики CoreXY и H-Bot
Данные кинематические схемы часто встречаются в коммерческих сферах. Отличаются оригинальными методами позиционирования экструдера. В обоих кинематиках платформа передвигается вверх-вниз.
CoreXY имеет два закрепленных на раме двигателя, которые приводят в движение два ремня для перемещения каретки экструдера по осям XY.
Кинематика H-Bot для 3D-принтера основана на похожей механике, но с другим ременным приводом. В данном случае ремень один и натянут по форме, напоминающей обведенную по контуру букву H (аш), за что схема и получила название аш-бот.
При работе обоих двигателей в одну сторону, каретка движется по оси X, в разные стороны — по оси Y. Когда один из двигателей остается неподвижным, каретка перемещается по диагонали.
Designer X PRO
Устройство для печати моделей высокого качества, сравнимых с промышленными изделиями. Обладает функцией двухматериальной печати. ПО полностью контролирует процесс, что минимизирует ошибки и увеличивает производительность 3D-принтера.
Дельта-принтеры
Дельта-принтеры и внешне, и по способу реализации механики отличаются от картезианских. Главное отличие заключается в способе передвижения экструдера относительно рабочего стола.
DELTA механика для 3Д-принтера визуально представляет собой закрепленный на трех точках экструдер, соединенный в единую конструкцию с неподвижной платформой для печати.
Достоинства и недостатки дельта-ботов
Кинематика Delta, по сравнению с картезианскими моделями, имеет более высокую скорость печати, но меньшую точность на краях модели. Причина в том, что для движения экструдера задействованы все три точки крепления, их двигатели работают одновременно, что приводит к накоплению ошибок в позиционировании координат.
3D принтер Tevo Little monster
Используется для коммерческой деятельности, в дизайне, рекламе и образовательных целях, а также применяется в качестве домашнего 3D-принтера. Отличается высокой скоростью печати и малыми габаритами. Работает со множеством материалов: PLA, ABS, Flexible PLA, HIPS, WOOD, PVA, Nylon.
Полярные 3D-принтеры
Достаточно новая, но интересная кинематическая полярная схема представлена на рынке одноименной компанией Polar. Как следует из названия, в печати используется полярная система координат — вместо привычных XYZ, позиционирование экструдера задается радиусом и углом.
Платформа таких 3D-принтеров имеет круглую форму, вращается по кругу и двигается целиком по одной горизонтальной оси, при этом экструдер движется только вверх и вниз. Представьте себе виниловый проигрыватель – печатающая головка принтера работает по принципу иглы звукоснимателя, движущейся по пластинке. С той лишь разницей, что тут “пластинка” не только вращается, а “игла” наоборот ограничена в перемещениях.
Плюсы и минусы полярной механики
Полярные 3D-принтеры позволяют создавать крупные объекты, при этом экономя средства за счет высокой энергоэффективности. Они пока имеют низкую точность, но в долгосрочной перспективе, возможно, производитель сможет решить эту проблему.
Polar 3D
Подогрев печатной платформы отсутствует, что затрудняет использование ABS. Имеет скромные габариты, хорошую производительность, но низкую точность, по сравнению с дельта-принтерами и моделями с декартовой системой координат. Производитель рекомендует приобретать модель для образовательных целей.
3D-принтеры с роботизированными манипуляторами
Представляют собой конструкцию с механическим программируемым манипулятором-захватом заменяемым экструдером. Если речь о крупных промышленных экземплярах (а бывают и более компактные), то, помимо функций манипулятора и 3D-принтера, такой робот может производить сварочные работы, фрезерование, покраску и другие операции.
Хотя механика 3Д-печати с робо-рукой в основном применяется в промышленности, существуют модели для индивидуального использования, с широким набором функций.
Роборука Dobot Magician Educational
Обладает множеством функций: может рисовать, писать, захватывать и перемещать предметы, выполнять лазерную гравировку и т.д.
SCARA
SCARA (Selective Compliance Articulated Robot Arm) — кинематика основанная на перемещении рабочего блока в горизонтальной плоскости за счет вращения в сочленениях рычажного механизма.
Построенные на данной схеме устройства отличаются очень высокой точностью и повторяемостью, намного выше чем у традиционных роботов-манипуляторов, низким уровнем шума и вибрации, компактностью. Если говорить о картезианских и SCARA-роботах сравнимых размеров и массы, то скара как правило не только точнее, но и быстрее.
В то же время, такие устройства дороги, имеют ограничения жесткости по осям XY, меньшую область работы и свободу движений.
Dobot M1 роборука
Компактный настольный робот, совмещает в себе функции 3D-принтера и манипулятора. Действия программируются через установленное на компьютере ПО или мобильное приложение. Имеет сменные головки для печати, гравировки, пайки и сборки.
Анализ роботизированных кинематических схем
Преимущества 3D-принтеров с роботизированным манипулятором очевидны – такой принтер не ограничен объемом рабочей камеры, которой у него нет – при той же области печати, само устройство занимает намного меньше места.
Экструдер может перемещаться не только послойно, как в настольных принтерах, но и по сложным траекториям в трех измерениях, и под разными углами, что облегчает процесс создания сложных конструкций. Несомненный плюс также то, что обычно это универсальные конструкции, при замене экструдера на другие блоки выполняющие множество задач.
По точности печати манипуляторы не составят конкуренции картезианским 3D-принтерам, но, благодаря своей универсальности и крупным размерам, промышленные роботы активно используются в 3D-печати в промышленных условиях, где почти незаменимы.
Миниатюрные настольные роботы хороши в первую очередь как наглядное пособие, а также объект хобби или инструмент для него.
Заключение
Выбирая устройство перед покупкой, прежде всего определитесь с целью — зачем вам нужен 3D-принтер? Коммерция, работа или развлечение? Универсальность FFF / FDM 3D-принтеров в том, что они подходят для разных применений.
Не важно, хотите ли вы изучить 3D-печать и приобрести новое хобби, воплотить в жизнь творческие фантазии или открыть бизнес — для реализации каждой из этих целей найдется подходящий аппарат, надо лишь выбрать.
Поможем с выбором 3D-принтера для любых задач, обращайтесь в Top 3D Shop.