Float или double что точнее

Урок №33. Типы данных с плавающей точкой: float, double и long double

Обновл. 11 Сен 2021 |

Типы данных с плавающей точкой

Есть три типа данных с плавающей точкой: float, double и long double. Язык C++ определяет только их минимальный размер (как и с целочисленными типами). Типы данных с плавающей точкой всегда являются signed (т.е. могут хранить как положительные, так и отрицательные числа).

Тип Минимальный размер Типичный размер
Тип данных с плавающей точкойfloat4 байта4 байта
double8 байт8 байт
long double8 байт8, 12 или 16 байт

Объявление переменных разных типов данных с плавающей точкой:

Если нужно использовать целое число с переменной типа с плавающей точкой, то тогда после этого числа нужно поставить разделительную точку и нуль. Это позволяет различать переменные целочисленных типов от переменных типов с плавающей запятой:

Обратите внимание, литералы типа с плавающей точкой по умолчанию относятся к типу double. f в конце числа означает тип float.

Экспоненциальная запись

Обычно, в экспоненциальной записи, в целой части находится только одна цифра, все остальные пишутся после разделительной точки (в дробной части).

На практике экспоненциальная запись может использоваться в операциях присваивания следующим образом:

Источник

Одинарная или двойная точность?

Введение

Статья также написана для тех из вас, у кого много данных. Если вам требуется несколько чисел тут или там, просто используйте double и не забивайте себе голову!

Точность данных

У 32-битных чисел с плавающей запятой точность примерно 24 бита, то есть около 7 десятичных знаков, а у чисел с двойной точностью — 53 бита, то есть примерно 16 десятичных знаков. Насколько это много? Вот некоторые грубые оценки того, какую точность вы получаете в худшем случае при использовании float и double для измерения объектов в разных диапазонах:

Почему всегда не хранить всё с двойной точностью?

Влияние на производительность вычислений с одинарной и двойной точностью

Когда производить вычисления с увеличенной точностью

Даже если вы храните данные с одинарной точностью, в некоторых случаях уместно использовать двойную точность при вычислениях. Вот простой пример на С:

Если вы запустите этот код на десяти числах одинарной точности, то не заметите каких-либо проблем с точностью. Но если запустите на миллионе чисел, то определённо заметите. Причина в том, что точность теряется при сложении больших и маленьких чисел, а после сложения миллиона чисел, вероятно, такая ситуация встретится. Практическое правило такое: если вы складываете 10^N значений, то теряете N десятичных знаков точности. Так что при сложении тысячи (10^3) чисел теряются три десятичных знака точности. Если складывать миллион (10^6) чисел, то теряются шесть десятичных знаков (а у float их всего семь!). Решение простое: вместо этого выполнять вычисления в формате double :

Пример

Предположим, что вы хотите точно измерить какое-то значение, но ваше измерительное устройство (с неким цифровым дисплеем) показывает только три значимых разряда. Измерение переменной десять раз выдаёт следующий ряд значений:

Чтобы увеличить точность, вы решаете сложить результаты измерений и вычислить среднее значение. В этом примере используется число с плавающей запятой в base-10, у которого точность составляет точно семь десятичных знаков (похоже на 32-битный float ). С тремя значимыми разрядами это даёт нам четыре дополнительных десятичных знака точности:

В сумме уже четыре значимых разряда, с тремя свободными. Что если сложить сотню таких значений? Тогда мы получим нечто вроде такого:

Всё ещё остались два неиспользованных разряда. Если суммировать тысячу чисел?

Пока что всё хорошо, но теперь мы используем все десятичные знаки для точности. Продолжим складывать числа:

Заметьте, как мы сдвигаем меньшее число, чтобы выровнять десятичный разделитель. У нас больше нет запасных разрядов, и мы опасно приблизились к потере точности. Что если сложить сто тысяч значений? Тогда добавление новых значений будет выглядеть так:

Обратите внимание, что последний значимый разряд данных (2 в 3.12) теряется. Вот теперь потеря точности действительно происходит, поскольку мы непрерывно будем игнорировать последний разряд точности наших данных. Мы видим, что проблема возникает после сложения десяти тысяч чисел, но до ста тысяч. У нас есть семь десятичных знаков точности, а в измерениях имеются три значимых разряда. Оставшиеся четыре разряда — это четыре порядка величины, которые выполняют роль своеобразного «числового буфера». Поэтому мы можем безопасно складывать четыре порядка величины = 10000 значений без потери точности, но дальше возникнут проблемы. Поэтому правило следующее:

(Существуют численно стабильные способы сложения большого количества значений. Однако простое переключение с float на double гораздо проще и, вероятно, быстрее).

Выводы

Приложение: Что такое число с плавающей запятой?

Я обнаружил, что многие на самом деле не вникают, что такое числа с плавающей запятой, поэтому есть смысл вкратце объяснить. Я пропущу здесь мельчайшие детали о битах, INF, NaN и поднормалях, а вместо этого покажу несколько примеров чисел с плавающей запятой в base-10. Всё то же самое применимо к двоичным числам.

Вот несколько примеров чисел с плавающей запятой, все с семью десятичными разрядами (это близко к 32-битному float ).

1.875545 · 10^-18 = 0.000 000 000 000 000 001 875 545
3.141593 · 10^0 = 3.141593
2.997925 · 10^8 = 299 792 500
6.022141 · 10^23 = 602 214 100 000 000 000 000 000

Выделенная жирным часть называется мантиссой, а выделенная курсивом — экспонентой. Вкратце, точность хранится в мантиссе, а величина в экспоненте. Так как с ними работать? Ну, умножение производится просто: перемножаем мантисссы и складываем экспоненты:

Сложение немного хитрее: чтобы сложить два числа разной величины, сначала нужно сдвинуть меньшее из двух чисел таким образом, чтобы запятая находилась в одном и том же месте.

Заметьте, как мы сдвинули некоторые из значимых десятичных знаков, чтобы запятые совпадали. Другими словами, мы теряем точность, когда складываем числа разных величин.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *