Fpu mandel что за тест
Тест производительности с помощью AIDA64
AIDA64 имеет множество тестов, которые возможно применять для оценивания состояния разных составляющих компьютера или техники в целом. Это искусственные тесты, т.е. они позволят дать оценку предельной эффективности системы. Тесты позволят узнать пропускную эффективность памяти, ЦП и других элементов базируются на специальном механизме AIDA64, обеспечивающий около 740 синхронных потоков работы и 10 категорий вычислителей. Этот способ гарантирует абсолютную реализацию для мультипроцессоров.
AIDA64 представляет ещё одиночные тесты для оценивания пропускной способности обработки, редактирования и изменения, и удержание кэша ЦП и памяти компьютера. Дополнительно есть другой тестовый узел для оценивания эффективности девайсов памяти, флеш карт и жестких дисков.
Как пользоваться тестом
Это тестовая панель, чтобы на нее перейти необходимо нажать на кнопку в меню Сервис | Тест GPGPU, эта панель предоставляет коллекцию тестов OpenCL GPGPU. С помощью них проводят диагностику производительности с применением разнообразных нагрузок OpenCL. Любой дополнительно полученного теста следует осуществлять на 16-ти графических процессорах, или же их соединять. В общем эта опция предназначена замерять уровень эффективности самого различного компьютерного оборудования.
Тестирование уровня производительности памяти
Эти тесты предоставляют характеристику наибольшей пропускной способности при исполнении подобных целей, таких как редактирование и удаление. Помимо этого, этот тест предоставляет функцию которая может просчитать приостановку памяти, что случается из-за использования процессора сведений памяти. Задержка памяти показывает промежуток времени, на протяжении которого производится перенос информации в регистре цельно численной арифметических данных процессора.
Тест CPU Queen
Этот немудреный тест дает оценку, каким способом происходит функционирование по предсказанию разветвлений основного ЦП и выполняется неверный прогноз ответвления. Делается выработка заключений для головоломки с 8 ферзями, находящимися на шахматной доске 10х10. Обдумываем систему: если частота равна, тот ЦП, который имеет самый низкий конвейер и если у него низкий уровень затрат, тот и выдаст лучшие итоги диагностики.
CPU PhotoWorxx
Данный тест может рассчитать продуктивность процессора на базе алгоритмов работы двухмерных изображений. С достаточно большими RGB творится такое:
CPU ZLib
Представленный тест выполняет замер эффективности основного ЦП и подсистемы оперативной памяти применяя сжатие объемов информации ZLib. Указания используются базовые x86, но содействие гиперпотока, мультипроцессоры (SMP) и многоядерность (CMP).
CPU AES
Тест дает оценку эффективность основного ЦП с применением шифровки по AES (методу зашифровки по узлам). В данный момент AES применяют в некоторых программах: 7z, RAR, WinZip. Указания к применению: x86, MMX и SSE4.1. Функция на аппаратном уровне разгонен на вычислителях VIA C3, C7, Nano и QuadCore, с методами содействия VIA PadLock Security Engine. Подходит и для цп со списком директив Intel AES-NI. Производится обеспечение гиперпотоковости, мультипроцессоры (SMP) и многоядерности (CMP).
CPU Hash
Данный тест замеряет эффективность основного ЦП применяя методы кэширования SHA1 в соотношении с основным шаблоном работы 180-4. Кодировка сделана с использованием ассемблер и основан под базовые ядра AMD, Intel и VIA учитывая внедрение комплекта директив SSE2, SSSE3, MMX, MMX+/SSE, AVX, AVX2, XOP, BMI.
FPU VP8
Представленный тест делает испытание с применением видео кодека Google VP8. Выполняется кодирование за 1 путь, располагающего увеличение 1280×720 и воспроизводящиеся со быстротой 8192 кбит/с (с учётом предельного качества). Элементы снимков производятся при содействии модуля фракталов Жюлиа FPU. В этом деле используется другие продолжения и наборы директив: MMX, SSE2, SSSE3 или SSE4.1.
Видео
Для чего нужен Stress FPU в AIDA64
Stress FPU в AIDA64 позволяет оценить стабильность работы центрального процессора при максимальной для него нагрузке в сценарии обработки чисел с плавающей запятой на протяжении ограниченного человеком промежутка времени. При этом можно наблюдать за температурными показателями устройства и его частотой в реальном времени на диаграмме или специальных информационных панелях.
Как запустить
FPU – floating point unit – это сопроцессор – модуль для выполнения операций с вещественными числами, преимущественно с плавающей точкой (часто называют с плавающей запятой). Основные ядра не могут заниматься такими расчётами, потому что для выполнения математических операций с вещественными числами нужны соответствующие процедуры.
Отдельный модуль для работы с такими числами загружает их, выгружает из регистров и выполняет математические операции за один такт, что значительно ускоряет процесс обработки по сравнению с процессором. В утилите для проведения теста стабильности системы предусмотрен сценарий Stress FPU – максимальная нагрузка блока для проведения математических операций над числами с плавающей запятой.
Наблюдайте за температурой оборудования и не допускайте ее приближения к критической градусов на 20 0 С. Пиковое значение указано в разделе: «Системная плата» – CPUID – строка «Температура Tjmax».
На первом графике значение термодатчика центрального процессора CPU начнет стремительно подниматься. На нижнем – одна кривая показывает нагрузку на математический сопроцессор, вторая – CPU Throttling – его троттлинг. Это механизм защиты процессора от термических повреждений, возникающих при перегреве или длительной работе при высокой температуре.
Появление троттлинга значит, что устройство начинает пропускать машинные такты для предотвращения дальнейшего разогрева. Такое решение снижает производительность и эффективность работы процессора.
Для проведения стресс-теста следует убедиться в качестве теплоотвода: новой термопасте, отсутствии пыли на лопастях вентилятора и пластинах радиатора, хорошей вентиляции воздуха внутри системного блока или ноутбука. Выходящее отверстие для вывода теплых воздушных масс из корпуса последнего не должны быть забитыми пылью.
Тестирование прерывается вручную кнопкой Stop. В настройках АИДА 64 можно указать приложению автоматически завершать работу при достижении на термодатчике указанной температуры центрального процессора или вывести уведомление о достижении указанного значения на термодатчике.
Сравнение производительности различных архитектур CPU по тестам AIDA64
реклама
Многие сталкиваются с проблемами выбора комплектующих для ПК. И одной из них является неочевидность разницы в производительности различных поколений процессоров, ведь не только всё зависит от частоты и количества ядер. В сети множество различных тестов и сравнений, но часто можно натолкнуться на рекламу или просто не понять всей картины, что было до и после, в случае выбора не самой новой архитектуры. Чтобы внести какую-то степень ясности в этот вопрос, сравним производительность популярных архитектур за последние 10 лет.
Методика сравнения
Одним из решений для показательного сравнения различных микроархитектур является AIDA64, а именно все тесты, кроме тестов памяти, CPU Queen и CPU PhotoWorxx, потому что данные тесты не линейны и зависят от используемой памяти. Остальные тесты линейные, не зависят от используемой памяти, их результаты кратны количеству ядер и поэтому повторяемые. Погрешность обычно составляет не более 2%. Также все тесты будут производиться с выключенной HyperThreading.
AMD K10 (45nm)
реклама
Phenom II X6 1100T (релиз декабрь 2010) является флагманом данной микроархитектуры. Socket AM3, шесть ядер, 125W TDP и частота 3.30GHz. Поддержка DDR3-1600. Отличается от современников отсутствием инструкций SSSE3, SSE4.1, SSE4.2, AES, AVX, AVX2, FMA3.
AMD Piledriver (32nm)
FX-8350 (релиз октябрь 2012) заявлен как самый производительный процессор данной микроархитектуры с TDP 125W. Однако не все материнские платы, рассчитанные на Socket AM3+ и поддерживающие 125W K10-процессоры, поддерживают данный процессор официально, и в прошлой статье мы узнали почему это так. Новый техпроцесс, восемь ядер на борту и частота аж в 4.00GHz. Поддержку памяти расширили до стандарта DDR3-1866. Добавили инструкции SSSE3, SSE4.1, SSE4.2, AES, AVX, FMA3. Теперь мы можем оценить результаты сравнения производительности на ядро K10 и Piledriver.
В левом столбце частота K10, необходимая для достижения результата Piledriver, работающего на частоте 4.00GHz. В правом столбце аналогично по отношению к K10.
реклама
Как видно, FX лидирует только в тесте AES, практически 10-кратное увеличение производительности, видимо из-за наличия соответствующей инструкции. Также видно, что более высокая частота на самом деле на 20% кукурузная (3.96/3.30) и в целочисленных операциях ядро Piledriver на частоте 4.00GHz равно ядру K10 на частоте 3.30GHz. Но в тестах FPU наглядно виден регресс по сравнению с поколением K10. Из плюсов только восемь таких ядер, против шести. Сравним данный шедевр процессоростроения с Intel Sandy Bridge, которая явилась на свет за полтора года до AMD Piledriver.
Intel Sandy Bridge (32nm)
Intel для настольных ПК делает процессоры похолоднее. Core i7-2600K (релиз январь 2011) с частотой 3.40GHz и 95W TDP, LGA 1155. четыре ядра. Поддерживает DDR3-1333. Стоит отметить, что у Intel иначе устроен TurboBoost, т.е. базовая частота относительно заявленного TDP является скорее промежуточной, и в данной модели турбо-частота 3.50GHz по всем ядрам (в некоторых моделях встречается и более значительная разница между базовой и турбо частотами). Тем не менее будем проводить тесты с отключенным турбо-режимом. Сравним Intel Sandy Bridge с AMD Piledriver.
Полный разгром. В операциях FPU у Piledriver вообще всё плохо, в 2,5 раза медленнее. Даже восемь ядер, не догонят четырёх, значительно более быстрых. В целочисленных же операциях отставание у Piledriver в 1,2 раза. А ведь i7-2600K может даже 3.50GHz при TDP 95W, в отличие от FX-8350, которому и 125W мало для сохранения своих 4.00GHz.
реклама
Intel Ivy Bridge (22nm)
В целом производительность осталась той же, наблюдается лишь небольшой прирост в целочисленных операциях и SHA3.
Intel Haswell (22nm)
Значительный прирост во многих сценариях.
Intel Broadwell (14nm)
Наблюдается снижение производительности в некоторых AVX-операциях. Проверял несколько раз. Отпишитесь в комментариях, у всех ли так. Очень мало было выпущено моделей для сегмента настольных ПК. Также нет заметной разницы по энергопотреблению в сравнении с Haswell (22nm).
Intel Skylake (14nm)
Небольшой прирост в целочисленных операциях и значительный в AVX.
Intel Kaby Lake (14nm)
Всё в рамках погрешностей в измерении. Архитектурно изменений нет. Но несмотря на те же 14нм, инженеры увеличили частоты при том же уровне TDP.
Intel Coffee Lake (14nm)
Вновь никакой разницы в производительности на такт. Значительные улучшения в техпроцессе, и как следствие повышение частот и количества ядер.
Intel Comet Lake (14nm)
И вновь нет роста производительности на такт. Зато как совершенствуют 14нм техпроцесс… Архитектурно тот же Skylake, который при 65W TDP имел четыре ядра и частоту 3.70GHz, и Comet Lake, у которого при том же TDP восемь ядер по 4.60GHz.
AMD Zen (14nm)
По основным тестам (CPU ZLib, FPU Julia/Mandel) эти архитектуры весьма близки.
AMD Zen+ (12nm)
По сравнению с Zen видно небольшое увеличение производительности на такт во всех сценариях. Также практически незаметное увеличение энергоэффективности, несмотря на переход на 12нм.
AMD Zen 2 (7nm)
Значительный рост производительности на такт. За исключением небольшого отставания в целочисленных операциях, AMD Zen 2 обогнала актуальную архитектуру от Intel. Но всё же по энергоэффективности лидирует 14нм Intel, например немногим ранее выпущенный Core i7-9700KF, работающий в турбо на частоте 4.60GHz по всем восьми ядрам и потребляющий 95W.
Пишите в комментариях, если у вас не согласуются результаты, с полученными мною. Также приветствуется критика и пожелания. Всем добра ^-^
Что делает опция “Stress FPU” в Aida64?
Тот, кто хоть раз запускал тест стабильности системы в программе Aida64 (бывший Everest), или хотя бы открывал его окно, то должен был обратить внимание на наличие галочки, которая называется “Stress FPU”. Судя по тому, что она находится среди других опций, активирующих нагрузку на отдельные компоненты ПК, не совсем понятно, за какой конкретный компонент она отвечает. Разобраться в этом нам и предстоит в данной статье.
Что такое FPU?
Как известно, процессор в единицу времени обрабатывает достаточно большой объем данных, среди которых есть операции с плавающей точкой. Говоря более простыми словами, это операции с дробными числами, причем дробная часть, может быть достаточно длинной, например 0,000014345679.
Именно количество операций с плавающей точкой в секунду (floating-point operations per second) является одим из основных показателей производитеьности системы. Измеряется оно в FLOPS.
Показатель производительности видеокарты в операциях с плавающей точкой
Что же такое Stress FPU?
Эта опция в тесте стабильности программы Aida64, которая задействует для увеличения нагрузки на процессор (графичечкий процессор) расчет операций с плавающей точкой.
Тест стабильности системы в Aida64
При ее активации ваша система будет нагружена расчетами дробных чисел, что ускорит нагревание процессора и поможет выявить возможные ошибки в работе компьютера, в том числе из-за перегрева.
LiveInternetLiveInternet
—Метки
—Рубрики
—Музыка
—Подписка по e-mail
—Поиск по дневнику
—Статистика
Тестирование производительности (быстродействия) ПК
Иногда возникает потребность сравнить производительность двух или более ПК, и не только чисто из писькометрических соображений (у кого круче), но и по объективным рабочим причинам, например выделить из парка ПК машину под сервер или для работы с ресурсоемкими приложениями (графика, всякие там фотошопы, корелы) или наконец начальник «дурак» и ему ну очень нужно знать на сколько вот эта машина «мощнее» другой и т.п.
Раньше в подобных случаях я использовал, наверняка многим известную, программу Everest, ныне Aida64.
Super PI используют многие оверклокеры для тестирования производительности и стабильности своих компьютеров. В обществе оверклокеров это одна из самых популярных программ, являющаяся негласным стандартом (эталоном) для оценки производительности ПК.
Программа была написана ещё в 1995 году во времена первого Pentium 90Mhz, для побития мирового рекорда расчета числа Пи. SuperPI вычисляет число Пи до указанного количества знаков после запятой (до 33,5 млн.), используя алгоритм Гаусса-Лежандра.
Как использовать? Нажимаете «Calculate(С)», выбираете сколько знаков числа Пи хотите рассчитать (для теста хватит 1M), нажимаете «ОК» и ждете пока программа закончит вычисления, по окончании Super PI выдаст сколько секунд было затрачено на расчет (эта величина и есть показатель производительности ПК, чем меньше тем лучше).
Увы у Super PI и SuperPI Mod есть и недостатки они используют набор инструкций x86, которые для современных процессоров уже устарели. К тому же Super PI и SuperPI Mod является одно потоковыми программами, поэтому их показатели (результаты тестов) для многоядерных процессоров занижены.
По сути это переработанный Super PI на основе идеи свободного программного обеспечения, к тому же System Stability Tester доступна как для Windows так и для Linux. Для своей работы использует библиотеку для высокоточных вычислений GMP.
Программа позволяет протестировать систему на предмет стабильности и быстродействия, путем вычисления значений числа Pi с точностью до 134 миллионов знаков после запятой, используя алгоритмы загружающие систему по максимуму.
При обнаружении проблем System Stability Tester предупреждает пользователя, позволяет сохранить данные в текстовой файл, отображает информацию о процессоре (модель, частота, изготовитель) и количестве оперативной памяти.