За счет чего едет тепловоз

Как устроен и работает тепловоз (часть 2)

Опубликовано 09.05.2020 · Обновлено 11.11.2021

Добро пожаловать в цикл статей об устройстве тепловозов, где изложение ведется простым и понятным языком. В материале я рассказываю о работе тех или иных узлов и агрегатов локомотивов. Чтобы начать с начала, или интересующего вопроса нет в этой статье, вот ссылка на первую часть.

Генераторы

Теперь о самом главном — генераторе. Ведь на его обмотку возбуждения необходимо подать ток, а какой агрегат это делает? Такой агрегат называется – возбудитель, это также генератор постоянного тока, только поменьше и работает он чисто на обмотку возбуждения главного генератора. Располагается он совместно на одном валу с другим генератором – вспомогательным, который служит для питания цепей управления тепловоза постоянным током, напряжением 75 вольт, зарядки АБ и питает обмотку возбуждения самого возбудителя. И называется этот тандем – двухмашинный агрегат.

Двухмашинный агрегат тепловоза

» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-1-300×194.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-1.jpg» width=»1000″ height=»648″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-1.jpg» alt=»Двухмашинный агрегат тепловоза | Двухмашинный агрегат тепловоза | Движение24″class=»wp-image-9867″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-1-300×194.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-1-768×498.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-1.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Двухмашинный агрегат тепловоза | Движение24″ /> Двухмашинный агрегат тепловоза

Вал двухмашинного агрегата соединен с карданным валом, выходящим из редуктора отбора мощности, через который и передается вращающий момент.

Всего на тепловозе установлено четыре генератора:

Так вот СПВ это небольшой генератор но переменного тока и работает он в системе автоматического управления электропередачей, намагничивая сердечник амплистата переменным током. Ведь из курса физики мы знаем, что для трансформации тока в трансформаторах необходим ток переменный, а амплистат и является таким трансформатором, вокруг сердечника которого имеется четыре обмотки: задающая, управляющая, регулировочная и стабилизирующая. Именно в них и наводится ЭДС, так необходимая для работы этой системы управления.

Синхронный подвозбудитель (СПВ)тепловоза

» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_1-300×187.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_1.jpg» width=»1000″ height=»623″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_1.jpg» alt=»Синхронный подвозбудитель (СПВ)тепловоза | Синхронный подвозбудитель (СПВ)тепловоза | Движение24″class=»wp-image-9868″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_1-300×187.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_1-768×478.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_1.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Синхронный подвозбудитель (СПВ)тепловоза | Движение24″ /> Синхронный подвозбудитель (СПВ)тепловоза

Вал СПВ приводится во вращение либо карданной либо ременной передачей, в зависимости от конструкции тепловоза.

А как запускается дизель?

На тепловозах с генератором постоянного тока это делается просто: он сам и вращает вал дизеля, только специальными электромагнитными контакторами создается цепь от аккумуляторной батареи на обмотку возбуждения и якорь, которые соединяются последовательно и уже генератор работает в качестве сериесного электродвигателя. После раскрутки вала и запуска дизеля схема разбирается и все становится на свои места. На других тепловозах для запуска применяются электродвигатели – стартеры.

Ну вот дизель у нас запущен, надо ехать, все цепи собраны, электропневматический реверсор изменил направление тока в обмотках возбуждения ТЭД, чтобы мы поехали в нужную нам сторону, все в общем в работе. Машинист переводит контроллер в 1-ю позицию и … Подключаются тяговые электродвигатели к силовой цепи посредством включения электропневматических контакторов, называемых «поездными», также электромагнитные подключают возбуждение возбудителя (ВВ) и возбуждение главного генератора (КВ). Все, схема собрана – возбудитель индуцирует обмотку возбуждения, ток вырабатывается и подается на ТЭД.

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

В процессе движения вся эта система работает слаженно, умно и толково, изменяя ток в обмотке возбуждения возбудителя и соответственно в обмотке возбуждения главного генератора, автоматически изменяя режимы его нагрузки ну и обороты вала дизеля через наш объединенный регулятор мощности, не меняя позиции контроллера машиниста, а машинист, имея в своем запасе 15 позиций уже сам контроллером увеличивает или уменьшает обороты вала дизеля, соответственно и его мощность.

Есть еще одна небольшая деталь в работе ТЭД из области электротехники: при трогании поезда с места ток на якорях ТЭД достигает максимальной величины, в процессе разгона и увеличения скорости ток падает, но растет напряжение, а нам так необходима полная мощность генератора на всех скоростях движения. Поэтому нужно ток нагрузки увеличивать принудительно. Все делается просто, путем ослабления магнитного поля в обмотках возбуждения ТЭД, то есть параллельно обмотке возбуждения подключены два сопротивления, вот на них и переключается часть тока, это называется – ослабление поля. Практически на всех тепловозах применяется две ступени ослабления поля и работает эта система автоматически, сопротивления подключаются соответствующими контакторами, называемыми ВШ. Отступлю, а вот на электровозах это делается вручную машинистом, но там и ступеней ослабления побольше. Все электрические аппараты находятся в высоковольтной камере (ВВК), которая закрывается и имеет на двери блокировки, если дверь в ВВК не закрыта, то схема тяги не соберется и тепловоз не тронется с места.

Дизель

Ну конечно-же наш дизель, со всеми своими системами и заморочками. На тепловозах устанавливаются дизели разных конструкций и мощностей, в зависимости от рода службы тепловоза. Дизели по расположению шатунов с поршнями делятся на однорядные, V-образные и однорядные с раздвигающимися поршнями. Если с первыми двумя все понятно, то в третьем случае в гильзе одного цилиндра движется два поршня, один сверху, другой снизу, встречаются они одновременно в одной точке, где происходит вспышка топлива, затем один поршень идет вверх, а другой вниз. Своими шатунами они соединены с коленчатыми валами дизеля, вала два, один вверху, другой внизу, соединяются они вместе вертикальной передачей. Вот такая мощная штука.

Яркий пример – дизель 10Д100, но сейчас эта схема уже не применяется на тепловозных дизелях. Дизели бывают двухтактные и четырехтактные. Двухтактные дизели уже не применяются, практически на всех тепловозах устанавливаются дизели четырехтактные и конечно-же с турбонаддувом. Турбонаддув воздуха в цилиндры дизеля обеспечивается турбиной турбокомпрессора, установленного на дизеле, турбина вращается энергией выхлопных газов. Принудительный наддув воздуха в цилиндры дизеля существенно повышает его к.п.д., топливо хорошо сгорает, отдавая всю энергию сгорания в работу, а не на выхлоп, а мощность дизеля вырастает в разы.

» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_3-300×155.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_3.jpg» width=»1000″ height=»516″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_3.jpg» alt=»Дизель 2Д100 от тепловоза | Дизель 2Д100 от тепловоза | Движение24″class=»wp-image-9871″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_3-300×155.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_3-768×396.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_3.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Дизель 2Д100 от тепловоза | Движение24″ /> Дизель 2Д100

Для примера, на тепловозах ТЭ3 применялся дизель с расходящимися поршнями, но без турбонаддува типа 2Д100 и его мощность составляла 2000 л.с.,хотя на нем была установлена механическая воздуходувка, но стоило конструкторам установить на этом дизеле два турбокомпрессора и его мощность поднялась до 3000 л.с., и стал известный нам дизель 10Д100, который славно потрудился на тепловозах серии 2ТЭ10. Также на многих типах дизелей воздух от турбокомпрессоров перед подачей в цилиндры еще и охлаждается, проходя через специальные воздухоохладители, в общем получается здорово.

Как было сказано выше тепловозные дизели работают в очень тяжелых условиях, они сильно нагружаются, работают и в жару, и в холод, поэтому требуют основательной смазки, охлаждения ну и конечно защиты от ненормальных всяких сбоев в работе.

Топливная система

Топливная система дизелей включает в себя топливоподкачивающий насос (ТН), который прокачивает топливо из бака, дополнительно подогретое в топливоподогревателе. Топливо пропускается по трубопроводам через фильтры грубой и тонкой очистки и поступает к топливному насосу высокого давления (ТНВД), там к специальным плунжерным парам, плунжер – это небольшой поршень, который сжимает порцию топлива до 200 и выше атмосфер, оно, проходя далее через форсунку превращается в туман, который и воспламеняется под сжимающим действием поршня. Разворот плунжеров на большую или меньшую подачу топлива посредством топливных реек осуществляет нам знакомый регулятор мощности, а очередность срабатывания плунжеров определяется кулачковым распределительным валом, находящимся в корпусе дизеля.

Оборудование топливной системы тепловозов

» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-300×169.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-1000×565.jpg» width=»1000″ height=»565″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-1000×565.jpg» alt=»Оборудование топливной системы тепловозов | Оборудование топливной системы тепловозов | Движение24″class=»wp-image-9874″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-300×169.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-1000×565.jpg 1000w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-768×434.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-1536×867.jpg 1536w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100_4-2048×1156.jpg 2048w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Оборудование топливной системы тепловозов | Движение24″ />

После каждого такта продукты сгорания топлива (дым) удаляются из цилиндра через клапаны или щели в цилиндровой втулке, повторюсь, все зависит от конструкции дизеля, а порция свежего холодного воздуха, подгоняемого турбокомпрессором уже поступает в цилиндр, ведь без кислорода сгорания не будет. С топливом все понятно, но все трущиеся части дизеля должны непрерывно под хорошим давлением смазываться маслом, а также им смазываются и охлаждаются втулки цилиндров, где происходит грандиозный процесс вспышек топлива.

Масляная система

На тепловозах масляные системы имеют несколько контуров и насосов. Вся работа и запуск дизеля начинается с работы маслопрокачивающего насоса (МН), который подключается электрическим контактором (КМН) с подключением реле времени (РВ), чтобы за 30-40 секунд он поднял масло из картера дизеля и прогнал его по всем системам. Затем происходит запуск, и данная схема разбирается. На дизеле есть шестеренчатый главный масляный насос, который обеспечивает доставку смазки ко всем деталям дизеля, есть свой насос и у центробежного фильтра, также масло поступает к фильтрам грубой и тонкой очистки. Существует контур на охлаждение.

На всех современных тепловозах масло проходит через водомаслянный теплообменник, в котором охлаждается водой, после чего поступает обратно в систему, ну а вода из теплообменника охлаждается в обычных секциях радиатора в холодильнике. На первых типах тепловозов масло охлаждалось также, как и вода в секциях, но потом стало понятно (система постоянно подтекала, лопалась, приводя к большим потерям), что водомаслянный теплообменник это лучшее, что можно придумать. По совершению своего рабочего цикла масло стекает обратно в картер дизеля.

Продолжение следует… водяная система, система вентиляции и охлаждения, система защиты дизеля.

Источник

Тепловоз

общественный транспорт, грузовые перевозки, маневровая работа

Теплово́з — автономный локомотив, первичным двигателем которого является двигатель внутреннего сгорания, как правило, дизель. Локомотив с бензиновым двигателем был бы неоправданно дорог в эксплуатации, локомотивы с газовой турбиной называют газотурбовозами

Появившийся в 1924 году в СССР тепловоз стал как экономически выгодной заменой устаревшим низкоэффективным паровозам, так и дополнением появившимся в то же время электровозам, требующим существенных дополнительных затрат на электрификацию пути и рентабельным поэтому на магистралях со сравнительно большим грузо- и пассажиропотоком.

За прошедший век в конструкции тепловоза было опробовано и внедрено множество усовершенствований: возросла мощность дизеля с нескольких сотен лошадиных сил до шести тысяч (ТЭП80) и выше, на разных типах тепловозов используются различные способы передачи энергии двигателя на колёсные пары, значительно возросло удобство управления и обслуживания тепловоза, снизились выбросы в атмосферу. Тепловозы строятся и используются во всем мире.

Содержание

Общая характеристика

Дизельный двигатель тепловоза преобразует химическую энергию сгорания жидкого топлива или горючего газа (ТЭ4) в механическую энергию вращения коленчатого вала, от которого момент вращения через тяговую передачу передается ведущим колесным парам. В случае использования на тепловозе электрической передачи дизелем вращается тяговый генератор, преобразующий механическую энергию вращения дизеля в электрическую. Электрическая энергия передается тяговым электродвигателям (ТЭД), связанным механически с колесными парами. ТЭДы электроэнергию преобразуют в механическую энергию движения локомотива. При наличии индивидуального привода каждый ТЭД связан с одной колесной парой, при групповом — один ТЭД приводит несколько колесных пар. При использовании гидропередачи дизель приводит гидроагрегат, при механической — коробку перемены передач.

К основным элементам конструкции тепловоза относятся кузов и рама, дизель — один или несколько, ударно-тяговые приборы (автосцепное оборудование), элементы передачи, ходовая (экипажная) часть — тележки и тормозное оборудование. К вспомогательным узлам — системы охлаждения и воздухоснабжения дизеля, песочная система, система пожаротушения, электрооборудование и т. д. При наличии газодизельного или газового двигателя на тепловозе имеется либо газогенераторная секция, либо оборудование для хранения сжиженного или сжатого природного газа с системой газоснабжения двигателя (газодизеля или конвертированного дизеля).

Общий принцип работы и конструкция

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

1 — дизель2 — холодильная камера3 — высоковольтная камера4 — выпрямительная установка
5 — тяговый электродвигатель6 — тяговый генератор7 — стартер-генератор8 — глушитель
9 — бак для воды10 — передняя кабина машиниста11 — задняя кабина машиниста12 — аккумуляторная батарея
13 — топливный бак14 — воздушный резервуар15 — тележка16 — топливный насос
17 — бункер песочницы18 — колёсная пара19 — метельник20 — буфера

Зависимость силы тяги от скорости движения является основной характеристикой тепловоза и называется тяговой характеристикой. Для случая максимального использования мощности локомотива график такой характеристики представляет собой гиперболу, в каждой точке которой произведение силы тяги на скорость локомотива равно его максимальной мощности.

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

При движении механическая энергия на валу дизеля, как правило, сначала преобразуется в электрическую (тепловоз с электропередачей) или энергию другого вида, а затем уже в механическую, которая и вращает колёса. Цель такой передачи — обеспечить близкий к оптимальному режим работы дизеля в разных точках графика тяговой характеристики локомотива, то есть при любой скорости движения поезда любого веса.

Виды передач

Основная сложность при создании тепловоза заключалась в его неработоспособности при непосредственном соединении вала дизеля с колёсными парами из-за несоответствия скоростной характеристики дизеля и тяговой характеристики локомотива. И история создания тепловоза — как пригодного к эксплуатации локомотива — по сути является историей создания передачи, делающей работоспособной систему «локомотив с дизелем». Дизель развивает максимальный крутящий момент при относительно высоких оборотах, максимальную мощность — на еще более высоких оборотах. Локомотиву максимальная тяга необходима при трогании с места, то есть от нулевой скорости. В дальнейшем, по мере разгона поезда, тяга может существенно уменьшаться. Локомотив должен иметь гиперболическую тяговую характеристику. Паровоз и электровоз постоянного тока, появившиеся раньше, оказались долговечными типами локомотива именно потому, что изначально обладают такой характеристикой. Для обеспечения же согласования характеристик дизеля как двигателя и локомотива как тяговой машины требуется передача. В современных тепловозах используются электрическая, гидравлическая/гидромеханическая и механическая передачи. До введения передачи делались попытки создания специальных дизелей (Гриневецкий), использования дополнительных источников энергии в виде подачи в цилиндры дизеля сжатого воздуха (тепловоз Р. Дизеля и Адольфа Клозе), построение теплопаровозов, для тех же целей использовавших пар. Все эти попытки оказались неудачными, а в исторической перспективе — бессмысленными, так как вместо адаптации системы локомотива для работы со вполне удачным двигателем превращали этот двигатель в нечто странное.

Механическая передача

Механическая передача включает фрикционную муфту, коробку передач с реверс-редуктором; а также карданные валы с осевыми редукторами или отбойный вал с дышловой передачей. М. П. обладает относительно высоким КПД и небольшим весом при передаче небольшой мощности, однако при переключении передач неизбежно возникают рывки. На практике её используют на локомотивах малой мощности и на (мотовозах), дрезинах и автомотрисах. Единственным в мире магистральным тепловозом с мощностью дизеля 1200 л. с., имевшим такую передачу, был ломоносовский Эмх3, первоначально Юм005. Эксплуатация его на Ашхабадской дороге показала техническую несостоятельность механической передачи в магистральном тепловозе такой мощности — несмотря на специально принимаемые меры, элементы передачи, особенно конические шестерни, при переключении передач из-за рывков выходили из строя. А на дорогах со сложным профилем дело доходило до разрыва поезда. Не изменилось положение и после снижения мощности дизеля до 1050 л. с. Поэтому Эмх оказался первым и последним магистральным тепловозом такого типа.

Электрическая передача

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

В электрической передаче вал дизеля вращает тяговый генератор, питающий тяговые электродвигатели (ТЭД). В свою очередь вращение вала ТЭД передаётся колёсной паре — при индивидуальном приводе — через осевой редуктор. Редуктор представляет собой соединённые зубчатые колёса, располагающиеся на валу ТЭД и оси колёсной пары. Электропередача постоянного тока обладает гиперболической тяговой характеристикой, при которой увеличение сопротивления движения вызывает увеличение силы тяги, а уменьшение — ускорение локомотива, легко управляется и регулируется. Электропередача позволяет управлять несколькими тепловозами по системе многих единиц из одной кабины. Недостатками её являются большая масса и относительная дороговизна необходимого оборудования. Электропередача обеспечивает электродинамическое (реостатное) торможение, при котором ТЭД работают как генераторы, нагруженные тормозными реостатами; за счёт сопротивления вращению валов ТЭД осуществляется торможение. При электродинамическом торможении меньше износ тормозных колодок.

Первоначально в тепловозах ввиду простоты устройства и исключительно удачных характеристик использовалась электропередача постоянного тока. Так, первые в мире тепловозы Ээл2 и Щэл1 вообще оказались концептуально пригодны для поездной работы именно благодаря электропередаче постоянного тока с регулированием по схеме Варда Леонардо. Однако из-за большого веса агрегатов и наличия механически изнашиваемых электрически нагруженных элементов конструкции — коллекторов, требующих тщательного ухода и ограничивающих рабочий ток якорей — в дальнейшем (в СССР с конца 1960-х годов) с ростом передаваемой мощности стали постепенно внедряться агрегаты переменного тока. Их внедрению содействовало появление компактных, недорогих и весьма надежных кремниевых выпрямителей. Первоначально были внедрены тяговые генераторы переменного тока с выпрямителями с ТЭД постоянного (пульсирующего) тока. В СССР первыми серийными тепловозами с передачей переменно-постоянного тока стали грузопассажирский экспортный ТЭ109, пассажирский ТЭП70 и грузовой 2ТЭ116.

Использование генераторов и ТЭД переменного тока позволяет увеличить мощность передачи, снизить массу, существенно повысить надёжность в эксплуатации и упростить обслуживание. Использование асинхронных тяговых двигателей, ставшее возможным после появления полупроводниковых тиристоров, значительно снижает возможность боксования тепловоза, что позволяет уменьшить массу локомотива при сохранении его тяговых свойств. За счет облегчения двигателей, конструктивно интегрированных в тележки, повышается плавность хода тепловоза и уменьшается его воздействие на путь. Даже в случае использования промежуточных блоков — выпрямителя и инвертора — применение синхронного генератора с асинхронными ТЭД оказывается оправданным экономически и технически. Передачи постоянного тока, отличающиеся сравнительной простотой конструкции, продолжают использоваться на тепловозах до 2000 л. с.

Гидравлическая передача

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

За счет чего едет тепловоз. Смотреть фото За счет чего едет тепловоз. Смотреть картинку За счет чего едет тепловоз. Картинка про За счет чего едет тепловоз. Фото За счет чего едет тепловоз

Гидравлическая передача включает собственно гидропередачу и механическую передачу на колесные пары (см. выше). В гидропередаче крутящий момент преобразуется с помощью гидромуфт и гидротрансформаторов. В общем виде гидропередача представляет собою комбинацию нескольких гидротрансформаторов и/или гидромуфт, реверс-редуктора и одной или нескольких шестеренчатых передач. Гидромуфта состоит из насосного колеса, вращаемого двигателем, и турбинного колеса, с которого снимается мощность. Насосное и турбинное колеса находятся на минимальном расстоянии друг от друга в герметической торообразной полости, заполненной жидкостью (маслом), передающей энергию вращения насосного колеса турбинному. В отличие от гидромуфты гидротрансформатор имеет промежуточное — реакторное колесо, именяющее направление и силу потока масла на турбинном колесе. Регулировка передаваемого крутящего момента в гидромуфте осуществляется изменением количества рабочей жидкости (масла) на лопатках насосного и турбинного колеса. Для повышения КПД гидропередачи используются самоблокирующиеся обгонные муфты, пакеты фрикционов, на определенных режимах замыкающие элементы передачи. Гидравлическая передача легче электрической, не требует расхода цветных металлов, менее опасна в эксплуатации. Однако гидропередача — прецизионно точный агрегат, требующий высокой квалификации и технической культуры обслуживающего персонала, а также высокого качества масел; ввиду несоблюдения указанных «условностей» и недоведенности конструкции эксплуатация тепловозов ТГ в СССР не была успешной. В СССР и в России гидропередача применяется главным образом на маневровых тепловозах (ТГМ), а также на магистральных тепловозах малых серий (ТГ102 — самая многочисленная нормальной колеи; ТГ16, ТГ22 — узкоколейные для Сахалинской ж. д.).

Подавляющее большинство тепловозов с гидропередачей построено в Германии. На сегодняшний день самым мощным тепловозом с гидро­пере­дачей является немецкий Voith Maxima 40CC (англ.) мощностью 3600 кВт (5000 л. с.).

Делались также попытки создания тепловоза с воздушной и газовой передачей (Шелест), однако они стали неуспешными.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *